
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Jan Bulánek

The Online Labeling Problem

Department of Theoretical Computer Science
and Mathematical Logic,

and
Institute of Mathematics of the Academy of Sciences

of the Czech Republic

Supervisor of the doctoral thesis: Michal Koucký

Study programme: Computer Science (4I1)

Prague 2014

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 paragraph 1 of the
Copyright Act.

In date signature of the author

Název práce: Problém Online Labelingu

Autor: Mgr. Jan Bulánek

Katedra: Katedra teoretické informatiky a matematické logiky a
Matematický ústav Akademie věd České republiky

Vedoućı disertačńı práce: Doc. Mgr. Michal Koucký, Ph.D.,
Informatický ústav Univerzity Karlovy

Abstrakt: Setř́ıděné pole je zásadńı algoritmický koncept, jehož on-line varianta je základem
pro problém online labelingu. Problém online labelingu je definován následovně. Vstupem je
pole velikosti m a posloupnost celých č́ısel z univerza {1, . . . , r} v libovolném pořad́ı délky n.
Naš́ım úkolem je udržovat všechna přijatá č́ısla setř́ıděná v poli. Mezi vloženými č́ısly mohou být
mezery. Protože závěrečné pořad́ı č́ısel nelze určit, dokud nejsou všechna vložena, je povoleno
č́ısla přesouvat. Ćılem je minimalizovat počet přesun̊u.

Ukážeme dva algoritmy, které společně poskytuj́ı optimálńı řešeńı pro téměř všechny možné hod-
noty m coby funkce n. Dokážeme těsné dolńı odhady pro téměř všechny hodnoty m. Zavedeme
notaci omezeného univerza vstupńı množiny a dokážeme dolńı odhady i pro tuto variantu.
Dokážeme dolńı odhady i pro př́ıpad randomizovaných algoritmů.

Kĺıčová slova: problém online labelingu, problém file maintenance, dolńı odhady, horńı odhady

Title: The Online Labeling Problem

Author: Mgr. Jan Bulánek

Department: Department of Theoretical Computer Science and Mathematical Logic, and
Institute of Mathematics of the Academy of Sciences of the Czech Republic

Supervisor: Doc. Mgr. Michal Koucký, Ph.D.,
Computer Science Institute of Charles University

A sorted array is a fundamental algorithmic concept. Its on-line variant gives rise to the online
labeling problem. In the online labeling problem we are given an array of size m and a stream
of n integers from the universe {1, . . . , r} coming in an arbitrary order. Our task is to maintain
all received items in the array in sorted order. The inserted items do not have to be stored
consecutively in the array. Since the final order of the items is not known until we see all the
items, moves of already inserted items are allowed but should be minimized.

We present two algorithms which together provide an optimal solution for almost all values of
m as a function of n. We provide tight lower bounds for almost all ranges of m. We introduce
a notion of the limited universe and prove lower bounds also in that setting. Some of our lower
bounds also apply to randomized algorithms.

Keywords: online labeling problem, file maintenance problem, lower bounds, upper bounds

Acknowledgments

This thesis could not have been written without the support of many people. The
most important person was my advisor Michal Koucký who not only was a great
teacher but also supported me and helped me on many occasions going far beyond
our work. I am very grateful for everything he has taught me and for being a true
friend to me.

I am also grateful to all I have worked with, besides Michal, they were Mike
Saks, who is a co-author of all new results in this thesis and my fellow students
Martin Babka and Vladimı́r Čunát who are co-authors of results in Chapters 6 and
8. It is impossible not to mention Vašek Koubek here. His comments to result in
Chapter 8 were invaluable and he pointed out to several weak points of the proof.
Finally, I had a pleasure to work with my friend Zbyněk Falt on his interesting
projects.

Also, I would like to thank my previous advisor Daniel Král’, for introducing
me to Michal.

I could not have been writing these lines without the continuous support of my
parents, my wife Petra and our son Honźık.

During my studies, I was partially supported by GAUK project no. 344711,
grant GA ČR P202/10/0854, grant IAA100190902 of GA AV ČR and project No.
1M0021620808 of MŠMT ČR.

Finally, I would like to thank Department of Theoretical Computer Science
and Mathematical Logic for the opportunity of being a doctoral student under
Michal’s supervision. I am also very grateful to Institute of Mathematics of the
Academy of Sciences of the Czech Republic for providing me an office and other
support for my research.

Contents

1 Introduction 1

1.1 Applications . 2

1.2 Definitions . 3

1.3 Label Space vs. Array Notation . 4

1.4 Organization of the Thesis . 4

I Online Labeling Problem Upper Bounds 5

2 Introduction 7

2.1 Previous work . 7

3 Online Labeling Problem in Small Arrays 9

3.1 Introduction . 9

3.2 Algorithm Outline . 9

3.3 Main Result . 10

3.4 Definitions . 10

3.5 Segment Hierarchy . 10

3.6 Algorithm Construction . 11

3.7 Proof of Lemma 3.6.1 . 12

3.8 Modification of Algorithm Asmall for Very Small Arrays 17

4 Online Labeling Problem in Large Arrays 21

4.1 Introduction . 21

4.2 Algorithm Outline . 21

4.3 Main Result . 21

4.4 Definitions . 22

4.5 Algorithm Description and Analysis 22

II Online Labeling Problem Lower Bounds 27

5 Introduction 29

5.1 Overview of Results . 29

5.2 Definitions . 31

5.3 Proof Techniques . 31

5.4 Lazy Algorithms . 32

6 Online Labeling with Large Label Space 35
6.1 Introduction . 35
6.2 The Main Theorem . 35
6.3 Reducing Prefix Bucketing to Online Labeling 36
6.4 An Improved Analysis of Bucketing 38
6.5 Adversary Construction . 38
6.6 Prefix Bucketing . 44
6.7 Connecting Bucketing to Online Labeling 45
6.8 Lower Bound for Bucketing . 46

7 Randomized Online Labeling with Polynomially Many Labels 53
7.1 Introduction . 53
7.2 The Main Theorem . 54
7.3 Mapping a Randomized Algorithm to a Hard Input Sequence 54
7.4 Bucketing Game . 56
7.5 Adversary Construction . 58
7.6 Prefix Bucketing and Tail Bucketing 63
7.7 Tail Bucketing and the Online Labeling 65
7.8 Lower Bounds on Tail Bucketing . 68
7.9 From costb−block to costcheap . 70

8 Online Labeling Problem with Small Label Space 77
8.1 Introduction . 77
8.2 Hard Sequence Construction . 77
8.3 Charging Scheme . 78
8.4 The Main Theorem . 79
8.5 Adversary Construction . 80
8.6 Interval Chain Properties . 83
8.7 Relating Charge to Online Labeling Cost 89
8.8 Estimating the Charge . 91

9 Online Labeling with Small Label Space and Universe 97
9.1 Introduction . 97
9.2 Proof Techniques . 98
9.3 The Main Results . 100
9.4 Reduction of the Theorems to the Main Lemma 101
9.5 Some Notation and Preliminaries for the Proof of the Main Lemma 106
9.6 A Description of the Adversary for Lemma 9.4.1 106
9.7 Important Properties of the Adversary 112
9.8 Proof of Lemma 9.4.1 . 117
9.9 Proof of Lemma 9.7.1 . 117

9.10 Proof of Lemma 9.7.2 . 121
9.11 The Proof that the Adversary Satisfies (P1)-(P7) 126

Bibliography 135

1. Introduction

The construction of effective algorithms and data structures is the central focus
of computer science since its very beginning. As the amount of data we need to
process increases this is an important topic even though the computational power
of our devices is increasing. Therefore, we need to design the best algorithms or
data structures possible. To do so we need to be able to recognize what is the best
possible solution. Thus, we need to prove lower bounds on the best possible cost
of algorithms and data structures.

In this thesis we do both. We design algorithms and prove lower bounds on
their cost. For a particular problem called the online labeling problem we not only
present a new algorithm which is superior to known algorithms for certain input
sizes, but we also prove matching general lower bounds.

The online labeling problem is tightly connected to sorting. Sorting is no
doubt one of the fundamental problems of computer science. We know optimal
time complexity of sorting. Sorted arrays are easy to use, provide asymptotically
optimal search time and utilize caches well during scan query.

A natural question is, whether inserts of additional items in a sorted array can
be implemented efficiently. There are immediate applications of such a structure in
algorithm and data structure design, e.g., dynamic sorted arrays, priority queues,
dictionaries etc. First, we formulate the problem.

You are given an array of size m and a stream of n integers coming in arbitrary
order where n ≤ m. Your task is to maintain all already received items in the
array in sorted order. The inserted items do not have to be stored consecutively
in the array. Since the final order of the items is not known until we see all the
items, moves of already inserted items are allowed but should be minimized. The
obvious solution moves O(n) items after each insert with the total complexity
O(n2). This, however, does not benefit from the fact that the size of the array
may be significantly larger than n.

This is one of several possible formulations of online labeling problem which is
also known as the file maintenance problem. In the general formulation, items from
a universe U of size r are assigned labels from a given linearly ordered universe of
size m. The ordering of their labels must respect the ordering of items. Relabeling
of items (which is equivalent to moving items in the array) is allowed, but should
be minimized.

The first non-trivial algorithm for the online labeling problem was given at the
beginning of the eighties by Itai, Konheim and Rodeh [17]. The amortized time
complexity was Ω(log2(n)) per inserted item, while the size of the array is only cn
for any constant c > 1. This surprising result was achieved by a clever utilization
of empty space in the arrays. Since then, several other algorithms were designed,

1

but it remained open whether whether any of them is asymptotically optimal.
In this thesis we resolve this question by proving lower bounds matching the

complexity of these algorithms. Indeed, we prove optimal lower bounds for almost
all possible array sizes, in the case of linear size arrays we prove such lower bounds
even under the assumption of limited universe (r ∈ O(n) while previous results
assume r ≥ 2n), and we also prove the first lower bound for randomized algorithms
for the online labeling problem.

Thus, we essentially completely determine the optimal complexity of determin-
istic algorithms for the online labeling problem. There are two possible further
directions how to extend our results: Are there asymptotically better randomized
algorithms for the online labeling problem? We know that in the case of polyno-
mial size arrays the answer is negative. In the other direction one can ask whether
it is possible to obtain better algorithms when the size of the universe from which
the items are selected is comparable to the size of the array. We know that in
the case of linear size arrays the answer is negative as well but what about larger
arrays?

1.1 Applications

The very first algorithm for the online labeling problem was given by Itai, Konheim
and Rodeh [17] who used it as a tool for an implementation of a priority queue.
This is a natural application as one can see the online labeling problem as a
dynamic maintenance of sorted array. Unfortunately, the best algorithm for the
online labeling problem in arrays of linear size is worse than binary trees by a
logarithmic factor which makes approach in [17] inferior to them.

However, in recent years there has been renewed interest in the online label-
ing problem problem because of its applications in the design of cache-oblivious
algorithms, e.g., design of cache-oblivious B-trees [4, 9], cache-oblivious dynamic
dictionaries [5], and packed arrays [6]. In these results, algorithms for the online
labeling problem are used to implement buffers that utilize caches well.

Recently, Emek and Korman [15] established a connection between the online
labeling and the distributed controller problem introduced in [1]. In distributed
controller problem, nodes in an asynchronous distributed network receive requests
from outside the network for units of a limited resource, and issue usage permits in
response to the requests. The number of permits issued may not exceed the total
resource supply, and the protocol must also ensure that no request is declined
until the number of permits committed exceeds a 1 − ε fraction of the supply.
Protocols with message complexity O(n log2(n)) on n-node networks are known
(e.g. [1, 19]). Emek and Korman showed that the online labeling problem can be
reduced to distributed controller problem. They noted that, using their reduction,

2

a matching Ω(n log2(n)) lower bound would follow from an Ω(n log2(n)) lower
bound on the online labeling problem. We provide such lower bound thus implying
the optimality of known upper bounds.

1.2 Definitions

We first define the deterministic version of online labeling problem. We have
parameters n ≤ m < r, and are given a sequence of n numbers from the set
U = {1, . . . , r} and must assign to each of them a label in the range {1, . . . ,m}.
This is the only meaningful setting of parameters, as for n > m we have insufficient
number of labels for all inserted items and for r ≤ m the problem is trivial.

A deterministic online labeling algorithm A with parameters (n,m, r) is an al-
gorithm that on input sequence (y1, y2, . . . , yt) with t ≤ n of distinct elements from
U outputs a labeling fA : {y1, y2, . . . , yt} → [m] that respects the natural ordering
of y1, . . . , yt, that is for any x, y ∈ {y1, y2, . . . , yt}, fA(x) < fA(y) if and only if
x < y. We refer to y1, y2, . . . , yt as items. We write Yt for the set {y1, y2, . . . , yt}.

Fix an algorithm A. Any item sequence y1, . . . , yn determines a sequence
fA,0, fA,1, . . . , fA,n of labelings (or allocations in case of file maintenance problem
formulation) where fA,t is the labeling of (y1, . . . , yt) determined by A immediately
after yt was presented. When the algorithm A is fixed we omit the subscript A.
We say that A relabels y ∈ Yt at step t if ft−1(y) 6= ft(y). In particular, yt is
relabeled at step t. RelA,t denotes the set of items relabeled at step t. The cost of
A on y1, y2, . . . , yn is χA ((y1, . . . , yn),m, r) =

∑n
t=1 |Relt|. If r ≥ 2n−1 parameter

r is omitted as it does not influence the cost of the algorithm.

A randomized online labeling algorithm Ar is a probability distribution on
deterministic online labeling algorithms. Given an item sequence y1, . . . , yn, the
algorithm Ar determines a probability distribution over sequences of labelings
f0, . . . , fn. The set RelAr,t is a random variable whose value is a subset of y1, . . . , yt.
The cost of Ar on y1, y2, . . . , yn ∈ U is the expected cost χAr ((y1, . . . , yn),m) =
E [χA ((y1, . . . , yn),m)].

The maximum cost χAr ((y1, . . . , yn),m) over all sequences y1, . . . , yn is denoted
χAr (n,m). We write χ (n,m) for the smallest cost χAr (n,m) that can be achieved
by any algorithm Ar with range m.

Thorough the thesis we work with various vectors and sequences that change
over time. We use subscript to denote the time step and we use (·) notation to
denote a particular coordinate of such a vector or sequence at that step.

3

1.3 Label Space vs. Array Notation

It is illuminating to think of the online labeling problem in terms of the file mainte-
nance problem mentioned earlier. In this reformulation the label space {1, . . . ,m}
is associated to an array indexed by {1, . . . ,m} and an item labeled by j is viewed
as stored in location j.

With the array picture in mind, we call an interval of labels a segment, and say
that a label is occupied if there is a item assigned to it. By segment of the array of
size m (or the label space) we denote the subinterval of {1, . . . ,m} (i.e. the indices
of cells of the array). Let S be an arbitrary segment in array of size m. By min(S)
and max(S) we denote the index of leftmost and rightmost cell of the segment.
By the |S| we denote the length of the segment i.e. max(S)−min(S) + 1.

1.4 Organization of the Thesis

The rest of the thesis consists of two parts.
Part I focuses on the upper bounds for the online labeling problem. We provide

description of two deterministic algorithms which together cover almost all pos-
sible array sizes and achieve asymptotically optimal time complexity. Our main
contribution in Part I is the optimal algorithm for arrays of superpolynomial size
which was a joint work with Michal Koucký and Michael Saks.

In Part II we describe tight lower bounds for the online labeling problem. This
part is mainly based on our results which were a joint work with Michal Koucký,
Michael Saks, Martin Babka and Vladimı́r Čunát. With a small exception (see
Chapter 6), these results are superior to previous work. We prove tight lower
bounds for the deterministic version of the online labeling problem for arbitrary m
assuming that the size of the universe of items is exponential. We provide the first
nontrivial lower bound for arrays of linear size under the assumption of limited
universe of items (tight). Finally we prove the first nontrivial lower bound for the
randomized algorithms which is tight for arrays of size n1+ε where ε is a constant
greater than zero.

4

Part I

Online Labeling Problem Upper Bounds

2. Introduction

In this part we present two algorithms. The first one is optimal for arrays of
small size, and the second one is optimal for arrays of large size. Together they
cover almost all array sizes except for arrays of size m ∈ [nω(1), nlogn) where no
non-trivial upper bound is known.

A trivial algorithm can use the same approach as the Insertion sort [18]. First
we determine a position of the new item. Then we move all items inserted so far
which are behind its position by one cell for the asymptotic cost O(n). Thus we
obtain one empty cell into which the new item can be inserted.

Notice, that such approach does not take any advantage of arrays of size larger
than n. To make better (or any) use of the additional space, our algorithms follow
two basic concepts. First we maintain gaps (free space) between already inserted
items and second we try to keep these gaps spread as evenly as possible.

Both our algorithms work in rounds. At the very beginning of the round the
algorithm is provided with the next item y to be inserted. Then the algorithm
finds out where y should be inserted. Then it finds the suitable part of the array
(segment), which contains this point and finally it rearranges the items in this
segment (including y) as evenly as possible.

2.1 Previous work

The very first non-trivial algorithm for solving the online labeling problem was
given by Itai, Konheim and Rodeh [17] who developed this algorithm to solve the
priority queue problem. They achieved O(n log2(n)) time complexity for arrays
of size O(n) in the amortized setting. This algorithm was simplified by Itai and
Katriel [16]. However the analysis of the algorithm became more complicated.
Another improvement was done by Willard [20], who achieved the same time
complexity but in the worst case settings (i.e. each insert has time complexity at
most log2(n)). His result was then simplified by Bender et al. [3]. In the special
case of m = n, an algorithm with cost O(n log3(n)) in amortized settings was first
developed by Zhang [21] and then it was simplified by Bird and Sadnicky [7]. This
result is surprising since when you insert last few items the array contains almost
no gaps.

It is also interesting that none of these works considers the case of limited
universe. As we already mentioned, if r ≤ m the online labeling problem is trivial.
A natural question is whether for r say less than 10m the problem is significantly
easier. We will show in Chapter 9 that in the case of linear array size you cannot
benefit from the small universe.

7

8

3. Online Labeling Problem in
Small Arrays

3.1 Introduction

In this chapter, we describe an algorithm Asmall for the online labeling problem

which achieves an asymptotically optimal time complexity O(n · log2(m)
log(m)−log(n)

) for

arrays of size m ∈ [4
3
n, nc] where c is a constant greater than one and its modifica-

tion, algorithm Atiny, which achieves an asymptotically optimal time complexity
O(n · log2(m) log

(
m

m−n

)
) for arrays of size m ∈ [n, 4

3
n]. This matches (up to a

constant factor) the lower bounds given in Chapters 8 and 9.
The algorithm Asmall is a modification of the algorithm by Itai, Konheim and

Rodeh [17]. However, unlike the original algorithm, Asmall is optimal even for
arrays larger than linear size. The existence of such modification was known as
a folklore, however, to our knowledge it was not published before. Furthermore,
we provide a more detailed analysis which handles rounding issues during the
rearrange of items. The result by Itai and Katriel [16] provides slightly simpler
algorithm with the same time complexity, however, its analysis is more complicated
and also we are not aware of its extension for superlinear arrays. Finally, there is
the result by Willard [20] (and consequently by Bender et al. [3]) who provides
an algorithm for the linear size arrays. Willard’s algorithm works even with the
worst case guarantee while Asmall achieves the optimal cost per insert only in the
amortized settings.

The algorithm Atiny is a reformulation of the result by Zhang [21]. We itera-
tively use the Asmall on the groups of items instead of items itself.

This chapter is organized as follows. In Section 3.3 we state the main theorem of
the chapter, which will be an immediate consequence of Lemmas 3.6.1 and 3.8.1.
Lemma 3.6.1 is proved by the construction of algorithm Asmall from Figure 3.1
which is done in Sections 3.2 to 3.7. The modification of Asmall, algorithm Atiny,
and associated Lemma 3.8.1 is in Section 3.8.

3.2 Algorithm Outline

Let us recall that each online labeling algorithm works in rounds. During each
round the algorithm is given a next item y to be inserted, then it moves some of
the already inserted items and finally it inserts y. Thus we only have to decide
which items will be moved during each round. From the high level perspective we
make this decision as follows. After we obtain y we determine where it should be

9

inserted. Then we find the smallest segment of the array which contains this point
and whose density of items in it is smaller than a certain threshold defined for
segments of various sizes. Finally we rearrange items in this segment (including
y) as evenly as possible.

3.3 Main Result

In this section we state the main result of this chapter.

Theorem 3.3.1 (Main Theorem). Let n,m be integers such that n < m. Then
there exist constants C0 and C1 and algorithms Asmall and Atiny such that

1. χAsmall (n,m) ≤ C0 · n · log2(m)
log(m)−log(n)

if n < 3
4
m, and

2. χAtiny (n,m) ≤ C1 · n · log2(m) log
(

m
m−n

)
otherwise.

This theorem is an immediate implication of Lemma 3.6.1 in which we show
the complexity of Asmall and Lemma 3.8.1 in which we show the complexity of
Atiny.

Notice that for m ∈ [n, n2] this matches the lower bounds given in Chapters 8
and 9 as log(n) ∈ Θ(log(m)) for such m.

3.4 Definitions

Let S be a segment of the array. Using the notation from Section 1.2 and given
an algorithm A we denote by itemsA,t(S) the set of y ∈ Yt such that fA,t(y) ∈ S.

The density of the segment S is defined as ρA,t(S) =
|itemsA,t(S)|

|S| . Recall, that

Yt = {y1, y2, . . . , yt} and for each segment of array S its length |S| is defined as
|S| = max(S)−min(S) + 1.

If the algorithm A is obvious from the context we omit it from the subscript.

3.5 Segment Hierarchy

Recall that we insert n items to the array of size m. Let m′ be the greatest power
of 2 such that m′ ≤ m. Let height = log(m′) = blog(m)c.

The segment hierarchy is a hierarchy of segments S` (i) for ` ∈ {0, . . . ,height}
and i ∈

{
0, . . . , 2` − 1

}
. We say that S` (i) is the i-th segment of the `-th level.

We first define segments Sheight (i) as follows:

1. if i < m−m′ then we set St (i) = {2i, 2i+ 1}

10

2. otherwise we set St (i) = {i+m−m′}

This ensures that the number of segments in the last level is power of two which
simplifies some proofs later. Let us note that the way we choose which segments
are of size two and which are of size one can be arbitrary (as long as we preserved
their numbers).

The remaining levels of segment hierarchy are defined as follows. Let us as-
sume that we have already defined all segments of the level ` + 1. Then for
i ∈
{

0, . . . , 2` − 1
}

we set S` (i) = S`+1 (2i) ∪ S`+1 (2i+ 1).

Notice that the segment hierarchy can be seen as a binary tree where each
segment (except those on the last level) has two subsegments and each segment
has one parent (except the one on the 0-th level).

Now we show that two consecutive segments on one level of segment hierarchy
cannot differ too much in their length.

Claim 3.5.1. For each ` ∈ {0, . . . ,height} and arbitrary i ∈
{

0, . . . , 2` − 1
}

it
holds that

3

2
· |S`+1 (2i) | ≤ |S` (i) | ≤ 3 · |S`+1 (2i) |, and

3

2
· |S`+1 (2i+ 1) | ≤ |S` (i) | ≤ 3 · |S`+1 (2i+ 1) |.

Proof. It follows from the definition of the segment hierarchy that

1. |S`+1 (2i) | ≥ |S`+1 (2i+ 1) |

2. 2 ≥ |S`+1(2i)|
|S`+1(2i+1)| .

Finally since |S` (i) | = |S`+1 (2i) |+ |S`+1 (2i+ 1) | the proof follows.

Finally, let us emphasize that the segment hierarchy is not built explicitly by
the algorithm Asmall and is only used for the exposition of the algorithm Asmall.
It is easy to observe that borders of each segment of the segment hierarchy may
be calculated in constant time if ` and i are given.

3.6 Algorithm Construction

In this section we define the algorithm Asmall with the properties we described
above in Theorem 3.3.1, part 1, and we state Lemma 3.6.1 which implies the
Theorem 3.3.1.

11

The algorithm Asmall determines for each inserted item yt a segment in which
the items are distributed as evenly as possible (including yt). To achieve this, we
define a level threshold density for ` ∈ {0, . . . ,height} as follows:

ρ̂(`) =
n

m
·
(m
n

) `
height

.

Now we can find so called critical segment Qt which is the smallest segment in
the segment hierarchy which contains the position where we want to insert yt and
whose density (with respect to t) is smaller than the threshold density of its level.
Finally, we rearrange all the items in the critical segment (including yt) as evenly
as possible.

We say that segment S was rebuilt at step t if it holds that S ⊂ Qt (i.e. not
Qt itself). All segments are considered to be rebuilt at step 0.

Prior to an algorithm pseudocode exhibition, we recall that itemst(S) denotes
the set of items stored in segment S at t-th step and ρt(S) denotes the density of
items in S.

The pseudocode of the algorithm is in Figure 3.1. Now we can state the main
lemma for the algorithm Asmall.

Lemma 3.6.1. Let n,m be integers such that n < m. Let Asmall be an algorithm
from Figure 3.1 with the parameters n,m.

Then

χAsmall (n,m) ≤ 6 · n · log2(m)

ln(m)− ln(n)
.

Prior to proving the lemma itself we state a couple of useful claims. The proof
then can be found on page 16.

3.7 Proof of Lemma 3.6.1

The first claim shows the relation between critical segments in different steps. It
is an immediate consequence of the fact that critical segments are chosen from the
segment hierarchy.

Claim 3.7.1. For each t, t′ ∈ {1, . . . , n} only one of the following cases is possible:

1. Qt ⊆ Qt′ ,

2. Qt′ ⊂ Qt,

3. Qt ∩Qt′ = ∅.

12

Algorithm Asmall(n,m)

• m′ ←− the greatest power of 2 which is at most m

• For t = 1 . . . n do:

– yt ←− next item to be inserted

– pos←− ft−1(y) where y is the smallest item from Yt−1 such that y ≥ yt
or m if such y does not exist.

{Critical Segment Choice}
– `←− height

– i←− j such that Sheight (j) contains pos

– do

∗ `←− `− 1

∗ i←− bi/2c
– while

(
|itemst−1(S`(i))|+1

|S`(i)|
> ρ̂(`)

)
– Qt ←− S` (i)

– S←− itemst−1(Qt) + {yt}
{Preserve Labels Outside of Qt}
– foreach y in Yt \ S do

∗ ft(y) = ft−1(y)

{Rearrange Evenly Items in Qt}
– ρ←− |S|

|Qt|
– foreach y in S do

∗ ord←− order of y in S
∗ ft(y)←−

⌊
ord−1
ρ

⌋
+ min(Qt)

• Output: f1, f2, . . . , fn

Figure 3.1: Pseudocode for the algorithm Asmall

13

A next claim is also an immediate consequence of the definition of algorithm
Asmall. It upper bounds the cost of a single step t using the size of the critical
segment Qt and the threshold densities.

Claim 3.7.2. For each t ∈ {1, . . . , n}, if i, ` are integers such that S` (i) = Qt

then

Relt ≤ ρ̂(`) · |S` (i) | = ρ̂(`) · |Qt|.

Before we state a next claim we define a paying set at step t which is the set of
items inserted to the subsegment S of Qt (the greatest one which would contain
yt) since S was rebuilt last time. We use them to define the items among which
we distribute the cost of step t.

More formally, consider an arbitrary step t ∈ {1, . . . , n} and the corresponding
critical segment Qt. Let ` and i be chosen so that S` (i) = Qt. Let S`+1 (j)
be chosen among S`+1 (2i) and S`+1 (2i+ 1) using the one which would contain
yt unless the rebuild occurred. Let t′ ∈ {0, . . . , t− 1} be the greatest such that
S`+1 (j) was rebuilt at t′. By the paying set at time t, Pt, we denote a subset of
{yt′+1, yt′+2, . . . , yt} such that for each y ∈ Pt it holds that ft−1(y) ∈ S`+1 (j) or
y = yt.

The following claims show that each inserted item y can only take place in
limited number of paying sets.

Claim 3.7.3. For each t, t′ ∈ {1, . . . , n} such that t′ < t and item y such that it
was inserted during the steps {1, . . . , t′}, if y ∈ Pt′ and y ∈ Pt, then Qt′ ⊂ Qt.

Proof. First notice that each subset of Qt′ was rebuilt (by definition). Thus the
smallest segment of segment hierarchy which was not rebuilt and which contains
y is Qt′ . Thus if y ∈ Pt it follows that Qt 6⊆ Qt′ since otherwise Pt would be subset
of yt′+1, yt′+2, . . . , yt but y was inserted prior to yt′+1.

Now, let us assume for the sake of contradiction that Qt ∩Qt′ = ∅. Then since
y /∈ itemst(Qt) we could infer that y /∈ Pt.

Thus the only remaining possibility is Qt′ ⊂ Qt (Claim 3.7.1) which implies
the claim.

A next claim shows, that just after the segment is rebuilt at step t the density
of this segment is limited by the density of Qt.

Claim 3.7.4. Let S be a segment which was rebuilt at step t. Then

ρt(S) ≤ ρt(Qt) +
1

|S|
.

14

Proof. Let S ′ be a subsegment of Qt such that min(S ′) = min(Qt) (i.e. their left
borders are equal). It is easy to show that

ρt(Qt) ≤ ρt(S
′) ≤ ρt(Qt) +

1

|S ′|
.

It follows immediately from the way the positions of items in Qt are chosen during
the rearrange (i.e., as evenly as possible) by Asmall.

In case min(S) = min(Qt) above mentioned fact implies the claim immediately.
Thus let us assume that min(S) > min(Qt). Let us choose S ′ so that S ′ =
{min(Qt), . . . ,min(S)− 1} and S ′′ so that S ′′ = {min(Qt), . . . ,max(S)}. From
the inequalities from the previous paragraph we can infer the following:

ρt(S) =
|itemst(S

′′)| − |itemst(S
′)|

|S|

≤

(
ρt(Qt) + 1

|S′′|

)
· |S ′′| − ρt(Qt) · |S ′|

|S|

= ρt(Qt) ·
|S ′′| − |S ′|
|S|

+
1

|S|
= ρt(Qt) +

1

|S|

Now we use this claim to lower bound the size of the paying sets.

Claim 3.7.5. For each t ∈ {1, . . . , n} let `, j be chosen so that S`−1 (j) = Qt. Let
i be chosen so that Pt \ {yt} ⊆ itemst−1(S` (i)). Then

|Pt| ≥
1

2
· (ρ̂(`)− ρ̂(`− 1)) · |S` (i) |.

Proof. Let t′ be the greatest such that t′ < t and S` (i) was rebuilt at step t′. First
notice that

|Pt| = |itemst−1(S` (i))|+ 1− |itemst′(S` (i))|.
Next we limit |itemst′(S` (i))|. Notice that Claim 3.7.4 implies that

|itemst′(S` (i))| ≤ |S` (i) | ·
(
ρt′(Qt′) +

1

|S` (i) |

)
≤ |S` (i) | ·

(
ρ̂(`− 1) +

1

|S` (i) |

)
,

which follows from the fact that Qt′ is at most at the level ` − 1. From Critical
Segment Choice we can infer that

|itemst−1(S` (i))|+ 1 > |S` (i) | · ρ̂(i),

15

otherwise the segment S` (i) would not be rebuilt at the step t.
Thus we can derive the following chain of inequalities:

|itemst−1(S` (i))|+ 1− |itemst′(S` (i))| ≥ |S` (i) | ·
(
ρ̂(`)− ρ̂(`− 1)− 1

|S` (i) |

)
|itemst−1(S` (i))|+ 2− |itemst′(S` (i))| ≥ |S` (i) | · (ρ̂(`)− ρ̂(`− 1))

.

And since S` (i) was not rebuilt from t′ to t it follows that |itemst−1(S` (i))| ≥
|itemst′(S` (i))| and thus we obtain:

2 · |itemst−1(S` (i))|+ 2− 2 · |itemst′(S` (i))| ≥ |S` (i) | · (ρ̂(`)− ρt′(ρ̂(`− 1))) ,

which implies the claim immediately.

Having all these claims we are ready to prove Lemma 3.6.1. In the next proof
we first define how we distribute the cost of each step t among the items from the
paying set at step t. Then we show that the overall sum of costs assigned to one

item is at most O
(

log(n)2

log(m)−log(n)

)
.

Proof of Lemma 3.6.1. Let y be an arbitrary item from Yn. By c(y) we denote
the cumulative cost assigned to the item y during the whole algorithm run. At the
very beginning we set c(y) = 0 for each y ∈ Yn. Then at each step t ∈ {1, . . . , n},
if y ∈ Pt we set c(y) = c(y) + Relt

|Pt| and we left it unchanged otherwise. Recall that
Relt denotes the set of relabeled items at step t.

It is easy to verify that χ (n,m) =
∑

y∈Yt c(y). Thus if we limit c(y) for each y
we are done.

Let `, i be chosen so that S` (i) = Qt. Let j be chosen so that Pt \ {yt} ⊆
itemst−1(S`+1 (j)). First we compute the maximal possible increase of c(y)at one
step by the following chain of inequalities:

Relt
|Pt|

≤ ρ̂(`)|S` (i) |
1
2
· (ρ̂(`+ 1)− ρ̂(`)) · |S`+1 (j) |

(Claim 3.7.2, Claim 3.7.5)

≤ 2 · 3ρ̂(`)

(ρ̂(`+ 1)− ρ̂(`))
(Claim 3.5.1)

=
6 · n

m
·
(
m
n

) `
height

n
m
·
(
m
n

) `+1
height − n

m
·
(
m
n

) `
height

=
6(

m
n

) 1
height − 1

=
6

eln(mn)· 1
height − 1

≤ 6 · height

lnm− lnn
,

where in the last inequality we used the fact that ex − 1 ≥ x.
Now it remains to limit the number of increases for each item. Claim 3.7.3

implies that the maximal number of paying sets in which each item can take place
is limited by height. This however implies that number of increases for each item
is limited also by height. The lemma follows.

16

3.8 Modification of Algorithm Asmall for Very Small Arrays

In this section we focus on the case when n > 3
4
m, i.e., the case when the array is

very small in comparison to the number of inserted items. We present a reformu-
lation of the approach introduced by Zhang [21] in his thesis. Our reformulation
will however use a notation consistent with the rest of thesis.

The basic idea is to use algorithm Asmall (Figure 3.1) for arrays of linear size
iteratively. In each round we fill one half of the remaining empty cells. Then we
show that the cost of each round is roughly O(n log2(n)) while it is obvious that
number of rounds is at most log(n).

Let Asmall denote the Algorithm from Figure 3.1. We use algorithm Asmall
as follows. Let n be the number of items we want to insert in current round and
n0 be the number of already inserted items. First we choose 2n items among the
n0 already inserted items as evenly as possible. We denote this set as Y ′. Then
we simulate Asmall with the parameters (2n, 4n) using the set Y ′ as an input (in
arbitrary order) so we obtain an allocation fAsmall,2n. We rearrange the items in
the original array so that for each pair of consecutive items from Y ′ there is the
same number of empty cells between them as in the allocation fAsmall,2n (placing the
remaining items arbitrarily between them so that the ordering is preserved). Notice
that after this step the number of items stored between each pair of consecutive
items from Y ′ is roughly n0

2n
.

Then after each consequent insert we add the newly arriving item yt to the Y ′

(in the end there will be 3n items in Y ′). We simulate insert of yt by Asmall and we
rearrange the items in the original array so that for each pair of consecutive items
from Y ′ there is same number of empty cells between them as in the allocation
fAsmall,t. Notice that the number of items between each pair of consecutive items
from Y ′ is still at most n0

2n
. Thus the cost of the newly constructed algorithm is

at most n0

2n
times greater than the cost of Asmall, while the number items inserted

during each round decreases exponentially.
Let us start with the main lemma of the section which together with Lem-

ma 3.6.1 implies Theorem 3.3.1.

Lemma 3.8.1. Let n,m be integers such that n ≥ 3
4
m and n ≤ m. Then there

exists algorithm Atiny such that

χAtiny (n,m) ≤ 62 ·m log2(m)

⌈
log

(
m

m− n

)⌉
.

The constants are chosen for ease of exposition and can certainly be improved.
Notice that this is asymptotically equal to O

(
n log2(n) log

(
m

m−n

))
. For n almost

equal to m this simplifies to O(n log3(n)).

17

To prove this lemma with first prove a claim which deals with one round of
the algorithm Atiny. Let χAtiny (n,m|n0) denote the maximal cost of the algorithm
Atiny which inserts n items to the array of size m assuming that n0 items was
already inserted.

Claim 3.8.2. Let n0,m be integers such that n0 ≥ 3
4
m and n0 < m. Then there

exists Algorithm B such that

χB

(⌊
m− n0

2

⌋
,m|n0

)
≤ 62 ·m log2(m)

Proof. To proof this claim we construct algorithm B. Recall, that Asmall is the
algorithm from Figure 3.1. For the sake of analysis we define minU = 0 and
maxU = 2m + 1 i.e. the items which are smaller and greater than any item in the
universe. Without loss of generality we assume thatAsmall assigns fAsmall,t(minU) =
0 and fAsmall,t(maxU) = m + 1 and fB,t(minU) = 0 and fB,t(maxU) = m + 1 for
each step t. Let n =

⌊
m−n0

2

⌋
denote the actual number of inserted items. Let

(y, y′)−subinterval of set Y be a subinterval of Y which contains all y′′ ∈ Y such
that y ≤ y′′ ≤ y. Let yn0+1, yn0+2, . . . , yn0+n be the sequence of inserted items. Let
YB,n0 denote the set of items inserted in the array before the algorithm starts. Let
YB,t be defined as YB,n0 ∪ {yn0+1, yn0+2, . . . , yt}. Let YAsmall,t be defined as follows:

• for t = n0 we define YAsmall,t to be a subset of YB,n0 of size m − n0 which
is chosen as evenly as possible among YB,n0 . In other words for each pair
y, y′ ∈ YAsmall,t∪{minU ,maxU} such that y < y′ and no items is between them
in YAsmall,t∪{minU ,maxU} let I be (y, y′)−subinterval of YB,t∪{minU ,maxU}.
Then

⌊
n0

m−n0+1

⌋
≤ |I| ≤

⌈
n0

m−n0+1

⌉
.

• for t > n0 we set YAsmall,t = YAsmall,n0
∪ {yn0+1, yn0+2, . . . , yt}.

We define the allocation fB,n0 to be an allocation obtained by application of
Rearranging Procedure (Figure 3.2) with parameters I = YAsmall,n0

and ymin =
minU . The cost of the procedure with such parameters is at most n0. Consider
the sequence of allocations fAsmall,t obtained by Asmall(m − n0 + n,m − n0 + 2n)
on input (y1, y2, . . . ym−n0)∪(yn0 , . . . , yn0+n) where sequence (y1, y2, . . . ym−n0) is an
arbitrary sequence of all items from YAsmall,n0

.
Then the allocations fB,n0 , fB,n0+1, . . . , fB,n0+n are obtained as follows. Let ymin

be the greatest from YAsmall,t ∪ {minU ,maxU} such that ymin < min(RelAsmall,t).
Similarly we define ymax to be the smallest from YAsmall,t ∪ {minU ,maxU} such
that ymax > max(RelAsmall,t). Let I = (ymin, ymax)−subinterval of YB,t. Then
for each y ∈ (YB,t \ I) ∪ {ymin, ymax} we set fB,t(y) = fB,t−1(y). For the items in
I we use a Rearranging Procedure from Figure 3.2 with parameters (I, t, ymin).

18

Rearranging Procedure(I, t, ymin)

• pos←− fB,t(y
min)

• ylast ←− ymin

• for i ∈ {2, . . . , |I| − 1} do

– y ←− i-th smallest from I

– if y ∈ YAsmall,t then

∗ pos←− pos+ fAsmall,t(y)− fAsmall,t(y
last) + 1

∗ ylast ←− y

– else

∗ pos←− pos+ 1

– fAtiny ,t(y)←− pos

Figure 3.2: Pseudocode for Rearranging Procedure

Since it is easy to see that such defined allocation is correct it remains to compare
sizes |RelAsmall,t| and |RelB,t|. Let for each t ∈ {n0, . . . , n0 + n} be y, y′ items
from YAsmall,t ∪ {minU ,maxU} such that no item is between them in YAsmall,t ∪
{minU ,maxU}. Let I be a (y, y′)-subinterval of YB,t ∪ {minU ,maxU}. Then it is

obviously true that |I| ≤
⌈

n0

m−n0+1

⌉
. Thus Rearranging Procedure implies that

|RelB,t| ≤
⌈

n0

m− n0 + 1

⌉
· (|RelAsmall,t|+ 1).

Combining these facts we infer the following chain of inequalities:

n0 +

n+n0∑
t=n0+1

RelB,t ≤
⌈

n0

m− n0 + 1

⌉
·
n+n0∑
t=n0+1

(|RelAsmall,t|+ 1) + n0

≤ 4 · n0

m− n0

·
n+n0∑
t=n0+1

|RelAsmall,t|+ n0

≤ 4 · n0

m− n0

· (χAsmall (m− n0 + n,m− n0 + 2n)−m+ n0) + n0

≤ 4 · n0

m− n0

· χAsmall (m− n0 + n,m− n0 + 2n)

≤ 4 · 6 · n0(m− n0 + n)

m− n0

· log2(m− n0 + 2n)

ln(m− n0 + 2n)− ln(m− n0 + n)
.

19

Now since m− n0 > 2n we can infer

n0 +

n+n0∑
t=n0+1

≤ 12 · 3

2
n0 ·

log2(2(m− n0))

ln(4
3
)

≤ 62 ·m log2(m).

Now we proceed with the proof of Lemma 3.8.1.
Proof of Lemma 3.8.1. The algorithm Atiny proceeds as follows. First, it inserts
3
4
m items using algorithm Asmall at the cost χAsmall

(
3
4
m,m

)
. Then we apply

Claim 3.8.2 r =
⌈
log
(

m
m−n

)⌉
times. After these r rounds

r∑
i=1

1

4
· m

2i
=
m

4
− m

4 · 2r
≥ m

4
− 1

4
(m− n) =

n

4

items were inserted. Together with 3
4
m items inserted in the first step, this is

more than n, while the cost per each round is smaller than 62m log2(m). Since the
number of rounds is at most

⌈
log
(

m
m−n

)⌉
the lemma follows.

20

4. Online Labeling Problem in
Large Arrays

4.1 Introduction

In this chapter we present an algorithm for the online labeling problem which
achieves asymptotically optimal time complexity O(n · logn

log logm−log logn
) for the label

space m ∈ [nlogn, 2n] where c is a constant greater than one. This matches the
lower bound from Chapter 6, however leaving a small gap for arrays of size m ∈
[nω(1), nlogn) where no nontrivial upper bound is known.

Prior to our joint work with Michal Koucký and Michael Saks [10] (on which
this chapter is based), to the best of our knowledge, no algorithm was published
for this range of array sizes.

4.2 Algorithm Outline

First notice that we can store log(m) items for the cost of 1 per item into an array
of size m. In such a case there is no need to relabel any item. This idea can be

iterated further to insert 1
4
· log2(m)

log log(m)
items for the cost of 2 per item. We proceed

in k rounds. In each round we insert 1
2
· log(m) items without any relabels. After

the round we redistribute items inserted in this round as evenly as possible. After
k rounds, every two items are at distance at least 2k·m

logk(m)
. So we can repeat the

process 1
2
· log(m)

log log(m)
times while keeping the minimum distance at least

√
m. Our

algorithm generalizes of this idea.

4.3 Main Result

Theorem 4.3.1. Let m > 216 and k be integers such that k ≤ 1/2
√

logm/ log logm.

Assume n ≤ logk/3(m). Then χAk (n,m) ≤ (2k − 1)n, i.e., there is an algorithm
Ak that inserts n items into an array of size m with amortized cost of 2k − 1 per
item.

For n large enough, m ≥ nlogn and k = 3 logn
log logm

, the assumptions of Theo-
rem 4.3.1 are satisfied, so we get an algorithm which inserts n items into an array
of size m with complexity O(logn

log logm
). Notice that for m ≥ nlogn, this is asymp-

totically the same as O(logn
log logm−log logn

). Theorem 4.3.1 is proved in Section 4.5.

21

4.4 Definitions

To simplify the description we assume (without loss of generality) that cells 1 and
m are initially loaded with items minU and maxU which are, respectively, lower
and upper bounds on all inserted items. In other words for each t we assume
ft(minU) = 1 and ft(maxU) = m. Notice that this is different to other chapters
where we assume ft(minU) = 0 and ft(maxU) = m+ 1.

At any step the array has certain occupied cells. A segment of cells whose
leftmost and rightmost cells are occupied and all others are unoccupied is called
an open segment; the items in the leftmost and rightmost cells of the open segment
S are denoted yL(S) and yR(S) (we include the occupied end cells in the open
segment for convenience in some calculations). The initial open segment has size
m. The segment is said to be usable if |S| ≥ 3 (which means there is at least one
unoccupied cell). For any new item y not stored in the array there is a unique
open segment S such that yL(S) < y < yR(S); we say that S is compatible with
y. If item y is assigned to an unoccupied cell in S then the open segment S is
split into two open segments which overlap at the cell containing y; the sum of
the sizes of these two segments is |S| + 1. A middle cell of S is a cell such that
the two segments obtained from S each have size at least |S|/2. It’s easy to check
that every usable segment has a middle cell. More generally, it can be checked
that given q − 1 items to be placed in an open interval S that has at least q − 1
unoccupied spaces we can place them evenly so that each of the q open segments
produced has size at least |S|/q. (The worst case is |S| = aq + 1 for some integer
a, and in this case each of the q resulting subsegments has length a+ 1 ≥ |S|/q.)

4.5 Algorithm Description and Analysis

For each k ≥ 1 we define an algorithm Ak. It will be obvious from the definitions
that the cost per inserted item is at most 2k− 1. The main technical question will
be how many items Ak can handle. Let us define nk(m) to be the maximum number
of items that Ak can handle in an interval of size at least m (the argument m need
not to be an integer) at cost 2k−1. Our goal is to show that nk(m) ≥ blogk/3(m)c.

First we define algorithm A1. For each successive item yt (t ≥ 1), we identify
the open segment S compatible with yt. If it is usable we store yt in the middle
cell of the segment. If there is not such segment, we stop since we tried to insert
more items than A1 can handle in the array of a given size. The pseudocode of A1

can be found in Figure 4.1.

22

Algorithm A1(m)

• f0(minU)←− 1, f0(maxU)←− m

• t←− 1

• Repeat

– ft ←− ft−1

– S ←− segment compatible with yt

{Check whether yt can be stored into the array}
– if S is usable

∗ ft(yt)←− middle cell of segment S

– else

∗ goto END

– t←− t+ 1

• label END

• Output: f1, f2, . . . , ft−1

Figure 4.1: Pseudocode of Algorithm A1

We analyze the cost of algorithm A1. We never move any inserted item, so the
cost per inserted item is 1 which equals 2k − 1 (since k = 1). Next we want to
lower bound the number of items that can be inserted. The size of the initial open
segment is m, so after t−1 items are inserted every open segment has size at least
m/2t−1. Recall we can handle arbitrary yt if this is at least 3. Thus we can insert
t items provided that t− 1 ≤ log(m/3) + 1. So n1(m) ≥ log(m/3) + 1, which is at
least log1/3(m) for m large enough.

For k ≥ 2 we defineAk, which makes use ofAk−1. We initially insert log(k−1)/3(m)
items using algorithm Ak−1, which by induction can be done at amortized cost of
2k− 3 moves per item. Then we rearrange all of the items so that they are spaced
as evenly as possible along the array which increases the amortized cost per item
to 2k − 2.

Next the algorithm works in rounds. Let oldR denote the set of items inserted
prior to round R. Let skR−1 denote the minimal size of the open segments defined
by the allocation of oldR at the beginning of the round R of algorithm Ak.

Each round consists of two phases. During the first phase we refer to the
open segments defined by the allocation of inserted items at the beginning of the

23

phase as working segments. We will run Ak−1 independently on each working
segment. When an item is presented we assign it to the working segment it is
compatible with, and insert it into the working segment using Ak−1. We insert at
most log(k−1)/3(skR−1) items during the whole round R. Since each working segment
has length at least skR−1, we are guaranteed that each of the independent copies of
Ak−1 successfully inserts all of their assigned items at amortized cost of 2k − 3.

After the first phase of each round, there may exist non-inserted items such
that their compatible segments are not usable. Thus we need to rearrange inserted
items to ensure usable segment for each each non-inserted item. Therefore during
the second phase we proceed as follows. We say that inserted item y is old if
y ∈ oldR and we say that it is new otherwise. Let excess of the segment S be the
number of old items in it minus the number of new items in it (with respect to a
current allocation). First we define S to be a set of disjoint segments such that
each segment in S has excess exactly 1, each new item is in exactly one segment
of S and the smallest and greatest items of each segment are old. Thus each
segment of S is a concatenation of some working segments. Such set always exists
as the whole array has the positive excess. If there are more such sets we choose
an arbitrary one. Then we rearrange all segments in S so that the labels of the
smallest and greatest items in each segment are preserved and the remaining items
in the segment (both old and new) are redistributed as uniformly as possible.

Since the number of rearranged old items in the segments of S is at most the
number of new items minus one (recall that the smallest and the greatest items of
each segment of S are not rearranged and the excess of each segment is 1), it gives
an additional amortized cost of at least 2 per new item. Thus the total amortized
cost of Ak is at most 2k − 1 per item.

Therefore to prove Theorem 4.3.1 it only remains to show that nk(m) ≥
logk/3(m). To do this, we first lower bound the minimal size of the working seg-
ment at the start of each round R, skR−1. We prove that skR−1 for R ≥ 1 is at

least 2−R+1m/(q+ 1), where q = log(k−1)/3(m). For R = 1 this is obvious from the
definition of Ak as prior to first round we insert nk−1(m) items.

To prove it for R > 1 assuming that sR−2 ≥ 2−Rm/(q + 1), we focus on the
second phase of each round. Let S be an arbitrary segment of S and let noldS be
the number of old items in it. Obviously its length is at least (noldS − 1) · skR−2

as the number of internal old items was noldS − 2. But since the number of new

items in the segment is exactly noldS −1 we can infer that sR−1 ≥
(noldS −1)·skR−2

2(noldS −1)
which

immediately implies that skR−1 ≥ 2−R+1m/(q + 1).

Now we can lower bound the number nk(m) for k > 1. (Recall n1(m) >
log1/3(m).) For k > 1 let us assume that nk−1(n) ≥ log(k−1)/3(m). Let r denote
the number of rounds. We have sk0 = m

q+1
≥ m

2 log(k−1)/3(m)
. Then the number of

24

items inserted during all rounds is at least

r∑
i=1

ni(s
k
0) ≥

r∑
i=1

log(k−1)/3(ski−1)

≥
r∑
i=1

log(k−1)/3

(
sk0

2i−1

)

=
r∑
i=1

(
log

(
m

2i log(k−1)/3(m)

))(k−1)/3

=
r∑
i=1

(
log

(
m

log(k−1)/3(m)

)
− i
)(k−1)/3

≥ r

(
log

(
m

log(k−1)/3(m)

)
− r
)(k−1)/3

.

Let us chose r =
√

logm and we obtain

√
logm

(
log

(
m

log(k−1)/3(m)

)
−
√

logm

)(k−1)/3

=
(

log(2k+1)/6(m)
)(

1−
√

logm

logm
− k − 1

3

log logm

logm

)(k−1)/3

Recall that k < 1/2
√

logm/ log logm (statement of Theorem 4.3.1). Thus we
obtain the lower bound for this expression

(
log(m)(2k+1)/6

)(
1−

√
log logm

logm

) 1
6
·
√

logm
log logm

≥
(
log(m)(2k+1)/6

)(1

2e

) 1
6

which is for m > 216 greater than log(m)2k/6. Therefore during all rounds of Ak,
logk/3(m) items are inserted with an amortized cost 2k − 1 per insertion. This
implies Theorem 4.3.1.

25

26

Part II

Online Labeling Problem Lower Bounds

5. Introduction

In this part, we present all lower bounds for the online labeling problem known
to date. These results prove tight lower bounds for deterministic online labeling
algorithms for all array sizes. In addition we provide the first (tight) lower bound
for linear size arrays for the case when the universe U is small (recall that for
the case |U | < m the online labeling problem is trivial). This result implies that
even for small universe size algorithms using arrays of linear size cannot perform
asymptotically better than in the case of exponential size universe. Finally we
present the first nontrivial lower bound for randomized algorithms, which is tight
for arrays of polynomial size. Refer to Table 5.1 for the overview of bounds.

Prior to our results, only little was known about lower bounds for the online la-
beling problem. There were only two results: the tight lower bound for polynomial
size arrays (which of course applies also for smaller arrays, but provides non-tight
bound) by Dietz et al. [13] and another result by Dietz et al. [12], that proves
a tight lower bound for a restricted class of online labeling algorithms (so called
smooth algorithms) in case of linear size arrays. Both of these results appear also
in Ph.D. thesis by Zhang [21], which prior to our work was the most comprehensive
source for the problem.

5.1 Overview of Results

Here we briefly describe out results that we present in this part.

In Chapter 6 we present the tight lower bound for deterministic algorithms
using arrays of size from nc (c > 1) to 2n. Our proof extends and simplifies the
result of Dietz at al. [13] (also in [21]) which is valid only for arrays of polynomial
size.

In Chapter 7 we describe the first lower bound for randomized algorithms. In
particular, this result is tight for polynomial size arrays. Since this bound is the
same (up to a constant factor) as the one presented in Chapter 6 we can infer that
at least for polynomial size arrays randomized algorithms are not asymptotically
better in expectation than the deterministic ones. As this section uses basic ideas
similar to Chapter 6 we advice you to read first Chapter 6 which uses simpler
argument and introduces many of the necessary concepts.

The remaining chapters focus on arrays of almost linear size.

In Chapter 8 we present the first tight lower bound for the superlinear (but
“subpolynomial”) arrays. This result also proves the tight lower bounds for linear
arrays which makes it seemingly superior to the result in the later Chapter 9.
However, in this result we do not prove the tight bounds for array of size close to

29

Array size (m) Asymptotic bound Note Reference

n < m ≤ 2n Θ
(
n log2(n) log(n

m−n)
)

Chapter 9

m = cn,
constant c > 1

Θ
(
n log2(n)

)
1) Chapters 8, 9

m = n1+o(1) Θ
(

n log2(n)
1+logm−logn

)
Chapter 8

m = nC ,
constant C > 1

Θ(n log n) 2) Chapters 6,7

m ∈ [n1+ω(1), nlog(n)) Ω
(

n logn
1+log logm−log logn

)
3) Chapter 6

m = nΩ(log(n)) Θ
(

n logn
1+log logm−log logn

)
Chapter 6

1) Valid even for the case when the universe U is small.
2) Valid even for randomized algorithms.
3) We do not know a matching upper bound.

Table 5.1: Overview of results of Part II

n and we do not consider the case of small item universe.

Finally in the last Chapter 9, we prove the tight lower bound for linear arrays
even in the case of arrays of size of n (recall that for such arrays we have an upper
bound O(n log3(n))) for arbitrary deterministic algorithms. The previous results
by Dietz et al. [12, 21] consider only the restricted class of smooth algorithms.
This restriction makes the construction of an adversary against the algorithms
easy (as opposed to the case of arbitrary algorithms), still the rest of their analysis
is non-trivial and contains useful ideas which we build on.

In addition this is the first result which considers the case of limited universe
of items we insert. This is important question as we already mention that for
the universe U of size r < m the online labeling problem is trivial and it is not
clear whether a small universe of size comparable to m cannot help one to develop
better algorithms. However, we show that for linear size arrays the lower bound
is asymptotically the same as for non-limited universe.

Chapter 9 uses similar ideas as Chapter 8, but Chapter 8 is significantly easier
to follow, as it proves the lower bound only for the online labeling problem without
further limitation. Thus we recommend you to read Chapter 8 prior to Chapter 9.

30

5.2 Definitions

In the lower bound chapters it will be convenient to introduce the following as-
sumptions and definitions. First recall that by log we denote the binary logarithm
unless otherwise specified and by ln we denote a natural logarithm.

Let A be an arbitrary online labeling algorithm with parameters (n,m, r),
where n ≤ m < r. By U = {1, . . . , r} we denote the universe from which the
items to be inserted are chosen. Recall the definitions from Section 1.2. By Yt we
denote the set of items inserted in first t steps. fA,t is a labeling of items from
Yt at step t produced by algorithm A. The set of items relabeled at step t is
denoted Relt. For the sake of analysis we define minU = 0 and maxU = 2r+1, i.e.,
items which are smaller and larger than any item in the universe. Without loss of
generality we assume that any online labeling algorithm A assigns fA,t(minU) = 0
and fA,t(maxU) = m + 1 at each step t. Clearly this assumption does not affect
the cost of the algorithm.

Let Y be a subset of items of the universe U . We say that I is an interval of
Y if

I = Y ∩ {min(I), . . . ,max(I)} .

We may omit Y if it is clear from the context.
Consider an arbitrary interval I of Yt ∪ {minU ,maxU}. We define the span of

an interval I as follows

spant(I) = fA,t(max(I))− fA,t(min(I)).

5.3 Proof Techniques

The online labeling problem can be seen as a game of two players - maintenance
algorithm A and the Adversary. The goal in constructing the adversary is to
force the online algorithm A to perform many relabellings during insertion of n
keys. The game is played in rounds. In each round t, Adversary may look at the
labeling fA,t−1 and then it determines next item yt to be inserted. In the case of
randomized algorithms, the adversary doesn’t get to see a particular labeling but
only the expected state of fA,t−1.

The main idea of all adversaries is to insert to the segments of array which
already contains many items. Repeated insertions eventually force the algorithm
to move the existing items. Deriving a lower bound based on this idea has various
complications. The natural notion of crowding of a segment is the ratio of stored
items to the size of the segment. Whether a particular portion of the array is
considered to be crowded may depend on the scale of segments being considered;
there may be a relatively small segment that is very crowded, but larger segments

31

containing it are uncrowded. To force the algorithm to work hard, we want to
identify a segment that is crowded at many different scales. This suggests iden-
tifying a long nested sequence of segments covering a wide range of scales, such
that each is crowded. The hope is that loading many items having value in the
middle of the range of items stored in the smallest nested segment will eventually
force the algorithm to do costly rearrangements at many different scales.

A straightforward way to accomplish this is to start with the entire array, and
successively select a nested subsegment. The way we select such subsegment differs
among the adversaries, however the basic idea is always that same: we try to track
the density in the array.

A dual view is to recursively pick subintervals of inserted items that span the
shortest possible segment(i.e., the highest density segment). Except in Chapter 9
we use this dual view. The advantage of the dual view will be apparent in the case
of randomized labeling where we know what are the inserted items but we do not
know their particular location in the array.

5.4 Lazy Algorithms

When proving our lower bounds we will restrict our focus to a subclass of online
labeling algorithms that are lazy. Next we provide definition of this property and
show that any labeling algorithm can be made lazy without affecting its cost. This
property was considered in [21] under the name normalized

Definition 5.4.1. Let A be an arbitrary algorithm with parameters (n,m, r). We
say that the algorithm A is lazy if for each t ∈ {1, . . . , n} it holds that RelA,t is
an interval of Yt.

In other words the algorithm is lazy if in each step all rearranged items form a
subinterval of already inserted items.

Now we can show the main property of the lazy algorithms.

Lemma 5.4.2. Let A be an arbitrary algorithm with parameters (n,m, r), where
n ≤ m < r. Then there exists a lazy algorithm A′ such that for each n,

χA (n,m, r) ≥ χA′ (n,m, r) .

To prove this lemma we construct algorithm A′ inductively on t based on the
original algorithm A. The basic idea is that we split Relt into minimum possible
number of intervals of Yt and we relabel only the items in the interval of Yt which
contains yt while we postpone relabeling of all the other intervals.

We proceed with the pseudocode of A′.

32

Algorithm(A′, n,m)

• Postponed′0 ←− ∅.
• for t ∈ {1, . . . , n} :

– Rel′t ←− maximal subset of Postponed′t−1 ∪ Relt which contains yt
and is an interval of Yt

– for each y ∈ Yt \Rel′t :

∗ fA′,t(y)←− fA′,t−1(y)

– for each y ∈ Rel′t :

∗ fA′,t(y)←− fA,t(y)

– Postponed′t ←− (Postponed′t−1 ∪Relt) \Rel′t

Now we prove a few claims about the properties of A′. First we state a claim
which is an immediate consequence of the construction of A′.

Claim 5.4.3. For each t ∈ {0, . . . , n} and for each y ∈ Yt it holds that y ∈
Postponed′t or fA′,t(y) = fA,t(y).

Now we can prove that fA′,t preserves the ordering of items in Yt.

Claim 5.4.4. For each t ∈ {0, . . . , n} and for each y, y′ ∈ Yt such that y < y′ it
holds fA′,t(y) < fA′,t(y

′).

Proof. From the construction of A′ and the previous claim we can immediately
infer for each t that for maximal y ∈ Yt ∪ {minU ,maxU} such that y < min(Rel′t)
it holds that fA′,t(y) = fA,t(y) and similarly for minimal y ∈ Yt such that y >
max(Rel′t) it holds that fA′,t(y) = fA,t(y). Thus by relabeling items in Rel′t we
cannot break the ordering. Now it is easy to proceed by induction on t to finish
the proof.

Now we proceed with the proof of Lemma 5.4.2.
Proof of Lemma 5.4.2. Since we already know that A′ produces correct labeling
(Claim 5.4.4) it only remains to show that its cost is small enough. We actually
prove that for each t ∈ {0, . . . , n} it holds that χA (t) ≥ χA′ (t) + |Postponed′t|.
This is obvious for t = 0 so let us assume that claim is true for t− 1. Recall that

Postponed′t = (Postponed′t−1 ∪Relt) \Rel′t

Rel′t ⊆ Postponed′t−1 ∪Relt.

Thus
|Postponed′t| ≤ |Postponed′t−1|+ |Relt| − |Rel′t|.

33

This implies the following chain of inequalities

χA (t)− χA′ (t) = χA (t− 1)− χA′ (t− 1) + |Relt| − |Rel′t|
≥ |Postponed′t−1|+ |Relt| − |Rel′t|
≥ |Postponed′t|.

where the first inequality follows from the induction hypothesis. The proof follows.

The consequence of Lemma 5.4.2 is immediate. When proving lower bounds
for the online labeling problem, we can focus only on the lazy algorithms. We use
this lemma in all lower bound proofs.

34

6. Online Labeling with Large
Label Space

6.1 Introduction

In this chapter we prove an Ω
(
n · log(n)

log log(m)−log log(n)

)
lower bound on the number

of moves for inserting n items. This lower bound holds for m between n and 2n.
Note that for polynomially many labels this bound simplifies to Ω(n log n). This is
tight except for m ∈ [nω(1), nlogn), where we do not know a matching upper bound.

For the case of polynomially many labels, Dietz at al. [13] (also in [21]) proved
a matching lower bound for the O(n log n) upper bound. Their result consists of
two parts; a lower bound for a problem they call prefix bucketing and a reduction
from prefix bucketing to online labeling. We provide a simpler, tighter and more
general lower bound for prefix bucketing, which allows us to extend the lower
bounds for online labeling to the case when the label space size is as large as 2n.

Our initial study of the proof in [13] of the reduction from prefix bucketing to
online labeling led us to think that there is a significant gap in their proof. We
modified their proof and obtained a correct version of the reduction. In [2] (on
which this chapter is based) we claimed that we were correcting an apparently
significant gap in the previous proof; we made this claim after checking with one
of the authors who agreed with it. Having done a more careful comparison of
our final proof to theirs, we see that while the proof in [13] has some misleading
statements and missing details, it is essentially correct. We present the details of
our modification in order to clarify the ambiguities that were present in [13].

Recall that we use definitions from Sections 1.2.

6.2 The Main Theorem

In this section, we state the main result of this chapter.

Theorem 6.2.1. There are positive constants C0, and C1 so that the following
holds. Let A be a deterministic algorithm with parameters (n,m, r), such that
C0 ≤ n ≤ m ≤ 2n and r ≥ 2n − 1. Then χA (n,m, r) ≥ C1 · n logn

3+log logm−log logn
.

Notice that this theorem implies a nontrivial lower bound even for the linearly
sized array (Ω(n log n)), however, it is not tight.

To prove the theorem we fix a labeling algorithm A and describe an adversary
who builds a sequence y1, y2, . . . , yt of items based on the behavior of A that will
cause the algorithm to incur the desired cost. In Section 6.5 we will describe the

35

adversary, and state Lemma 6.5.1, which proves a lower bound on the cost incurred
by algorithm A on the sequence produced by the adversary. Theorem 6.2.1 follows
immediately from Lemma 6.5.1.

6.3 Reducing Prefix Bucketing to Online Labeling

Dietz et al. [13] sketched a reduction from prefix bucketing to online labeling.
In their reduction they describe an adversary for the labeling problem. They
show that given any algorithm for online labeling, the behavior of the algorithm
against the adversary can be used to construct a strategy for prefix bucketing. As
mentioned above, while the idea of their adversary and the reduction from prefix
bucketing to online labeling are essentially correct, the description is incomplete
and ambiguous. In Section 6.5 we will present a modification of their adversary,
and in Section 6.7 we give a full proof of the connection to prefix bucketing. We
now sketch the adversary construction and the reduction.

The goal in constructing an adversary is to force any online algorithm to per-
form many relabelings during insertion of n items. The adversary starts by insert-
ing the artificial items minU and maxU to positions 0 and m + 1. Then in each
further step it determines one of the inserted items y and chooses next item so
that it will be adjacent (i.e. there is no inserted item between them) to y. The
central issue in defining the adversary is to determine at each step which inserted
item to choose.

As a guide to picking each successive item, the adversary maintains a sequence
(chain) of nested subintervals of already inserted items. The chain serves a dual
purpose: the chain after step t is used by the adversary to select the item inserted
at step t+ 1, and the sequence of chains over time provides a way to lower bound
the total cost incurred by the algorithm. Each successive interval in the chain has
span at most half the previous interval, and its density is within a constant factor
of the density of the previous interval. The chain ends with an interval containing
between 2 and 7 items. The next item to be inserted is then chosen so that it is
adjacent to the smallest item in the lowest interval of the chain.

Initially, and during the first 7 inserts, the chain consists of just the single
interval containing at most 7 items. After each subsequent insert, the algorithm
A specifies the label of the next item and (possibly) relabels some items. The
adversary then updates its chain. For the chain immediately prior to the insert,
the adversary specifies the critical interval to be the smallest interval of the chain
such that its smallest and greatest items were not relabeled. Its index in the chain
is then called critical level and is denoted by qt. The new chain is then obtained as
follows. We say that intervals with index at most qt are preserved for step t which
means that they are carried over from the previous chain, with the addition of yt.

36

Otherwise the intervals are rebuilt. Beginning from the critical interval the chain
is extended as follows. Having chosen the interval I from the chain, define its left
buffer to be the smallest 1/8 items of I, and its right buffer to be the greatest 1/8
items of I. Let I ′ be the interval obtained from I by deleting the left and right
buffers. The successor interval of I in the chain is a subinterval of I ′ with the
minimum span that contains exactly half (rounded down) of the items of I ′. The
chain ends when we reach an interval with at most seven items.

In [13], the authors show that there is always a dense point, which is a point
with the property that every subsegment of the array containing it has density
at least half the overall density of the label space. They use this as the basis
for building the chain. We build a chain with similar properties using a simpler
argument.

It remains to prove that the algorithm will make lot of relabels on the sequence
of items produced by the adversary. Following Dietz et al. [13], we do this by
relating online labeling to the prefix bucketing game. (Our definition of the game
differs slightly from that in [13].)

A prefix bucketing of n items into k buckets (numbered 1 to k) is a one player
game consisting of n steps. At the beginning of the game all the buckets are empty.
In each step a new item arrives and the player selects an index p ∈ {1, . . . , k}. The
new item as well as all items in buckets 1, . . . , p− 1 are moved into bucket p at a
cost equal to the total number of items in bucket p after the move. The run of the
game is therefore completely specified by the sequence p1, . . . , pn, where pt is the
bin into which the player placed the new item at step t. The goal is to minimize
the total cost of n steps of the game.

The lower bound on online labeling is obtained by the following correspondence.
Consider the run of an arbitrary online labeling algorithm A against the given
adversary. At each step t, the adversary determines a particular level pt of the
chain to be the critical level (which is always at most k = dlog(m+ 1)e). Consider
the sequence p1, . . . , pn as a sequence of placements defining a prefix bucketing of
n items into k = dlog(m + 1)e buckets. It turns out that the total cost of the
prefix bucketing will be within a constant factor of the total number of relabelings
performed by the online labeling algorithm. Hence, a lower bound on the cost of
a prefix bucketing of n items into k buckets will imply a lower bound on the cost
of the algorithm against our adversary.

The connection between the cost of A against the adversary, and the cost of
the associated prefix bucketing is obtained as follows. Recall that we may assume
that the algorithm is lazy. The cost of the bucketing merge step pt at step t is
at most the number of items in the critical interval, so to relate this to the cost
incurred by the online labeling algorithm, it is enough to argue that at step t a
constant fraction of the items in the critical interval were relabeled. This is done

37

by arguing that for each successor (sub)interval of the critical interval, either all
labels in its left buffer or all labels in its right buffer were reassigned, and the total
number of such items is a constant fraction of the items in the critical interval.

6.4 An Improved Analysis of Bucketing

It remains to give a lower bound for the cost of prefix bucketing. This was previ-
ously given by Dietz et al. [13] for k ∈ Θ(log n). We give a different and simpler
proof that gives asymptotically optimal bound for k between log n and O(nε). We
define a family of trees called k-admissible trees and show that the cost of buck-
eting for n and k, is between dn/2 and dn where d is the minimum depth of a
k-admissible tree on n vertices. We further show that the minimum depth of a
k-admissible tree on n vertices is equal gk(n) which is defined to be the smallest d
such that

(
k+d−1
k

)
≥ n. This gives a characterization of the optimal cost of prefix

bucketing (within a factor of 2). When we apply this characterization we need to
use estimates of gk(n) in terms of more familiar functions (Lemma 6.8.12), and
there is some loss in these estimates.

6.5 Adversary Construction

We now specify an adversary Adversary(A, n,m) which given an online labeling
algorithm A, an integer n, and label space size m, constructs an item sequence
y1, y2, . . . , yn from the universe U = {1, . . . , 2n − 1}.

To pick the sequence of items y1, . . . , yn, the adversary will maintain a sequence
of nested intervals of inserted items Yt = {y1, y2, . . . , yt}, 1

It(deptht) ⊆ · · · ⊆ It(2) ⊆ It(1) = Yt ∪ {minU ,maxU},

updating them after each time step t. In what follows, ft is the allocation of Yt
by the algorithm A. Consider an arbitrary subinterval I of It(1). For a positive
integer b, b ≤ |I|/2, let densifyt(I, b) be the subinterval T of I such that

• T does not contain any of the b largest or smallest elements of I.

• |T | =
⌊
|I|−2b

2

⌋
.

• spant(T) is minimal among all possible T ’s.

1Recall, we use subscript to denote step and we use (·) notation to denote a particular coor-
dinate of such a vector or sequence at that step.

38

If there are more such subintervals T we choose the one with the minimal
smallest item. Hence, densifyt(I, b) is the subinterval T of I with the minimum
span that contains the appropriate number of items but which excludes at least b
smallest and largest items from I. These b items on either side of T form the left
and right buffers described in Section 6.3.

We are now ready to present our adversary. In the adversary, bt(i) denotes the
number of items in the left and right buffers of It(i). This number changes only
when It(i) is rebuild. Also, qt denotes the critical level of the chain after inserting
item yt, i.e., the level from which the chain will be rebuilt.

The adversary pseudocode is given in Figure 6.1.

A crucial assumption for this adversary is that y1, . . . , yt are distinct. It is
easy to see by induction on t that the items belonging to Yt ∪ {minU ,maxU} are
multiples of 2n−t, and it follows that yt is strictly between the smallest and second
smallest elements of It−1(deptht−1).

We make the following claim about the adversary which together with Lem-
ma 5.4.2 implies Theorem 6.2.1.

Lemma 6.5.1. Let m,n be positive integers such that n ≤ m. Let A be a lazy
online labeling algorithm with the range m. Let y1, y2, . . . , yn be the output of
Adversary(A, n,m) (Figure 6.1). Then the cost

χA (y1, y2, . . . , yn) ≥ 1

512
· n log n

3 + logdlog(m+ 1)e − log log n
− n

6
.

The constants are chosen for ease of exposition and can certainly be improved.

To prove the lemma we will design a so called prefix bucketing game from the
interaction between the adversary and the algorithm, we will relate the cost of
the prefix bucketing to the cost χA ((y1, y2, . . . , yn),m) (Lemma 6.7.2) and we will
lower bound the cost of the prefix bucketing (Lemma 6.8.13). The proof of Lemma
6.5.1 is on page 50.

In preparation for this, we prove several useful properties of the adversary and
introduce some additional definitions.

By birtht(i) we denote the greatest t′ such t′ ≤ t and qt′ < i , i.e., when Ii(t)
was rebuilt last time.

We start by setting limits on the size of the smallest interval in the chain.

Claim 6.5.2. For each t ∈ {0, . . . , n} it holds that |It(deptht)| ≥ 2.

Proof. This is obviously true for t = 0. Now assume that the claim is true for
t − 1. From It−1(deptht−1) ⊆ It−1(qt) it follows that |It−1(qt)| ≥ 2. Using this,
the termination condition of Rebuilding Rule implies the claim immediately.

39

Adversary(A, n,m)

{Initialization}
• y1 ←− 0

• I0(1)←− {minU ,maxU}, depth0 ←− 1, b0(1)←− 1

• For t = 1, . . . , n do

– yt ←− min(It−1(deptht−1)) + 2n−t

– Run A on (y1, y2, . . . , yt) to set ft and Relt.

{Choose Critical Level}
– qt ←− i maximal such that min(It−1(i)),max(It−1(i)) /∈ Relt
– i←− 1

{Preservation Rule}
– While (i ≤ qt)

∗ It(i)←− It−1(i) ∪ {yt}
∗ bt(i)←− bt−1(i)

∗ i←− i+ 1

{Rebuilding Rule}
– While |It(i− 1)| ≥ 8

∗ It(i)←− densifyt(It(i− 1), bt(i− 1))

∗ bt(i)←− d|It(i)|/8e
∗ i←− i+ 1

– deptht ←− i− 1

– bt(deptht)←− 1

Output: y1, y2, . . . , yn

Figure 6.1: Pseudocode for the adversary

40

Next claim gives us a better understanding of how the intervals are changed
during each step. We show that unless Rebuilding Rule is applied to an interval,
the interval changes only by adding yt at step t.

Claim 6.5.3. For any t ∈ {1, . . . , n} and i ∈ {1, . . . , qt} it holds that

Relt ⊆ It(i) \ {min(It(i)),max(It(i))}.

Proof. If we prove that for i = qt we are done since for i < qt It(qt) ⊆ It(i). From
the construction we know immediately that yt > min(It−1(deptht−1)). To prove
yt < max(It−1(deptht−1)) it is enough to use Claim 6.5.2. Since It−1(deptht−1) ⊆
It−1(qt) we also obtain yt > min(It−1(qt)) and yt < max(It−1(qt)).

To finish the proof we only have to combine the fact from the previous para-
graph, the fact that A is lazy and finally the fact that min(It−1(qt)) /∈ Relt and
max(It−1(qt)) /∈ Relt and It(qt) = It−1(qt) ∪ yt.

Now we show that unless the Rebuilding Rule is applied to some interval of
the chain its span is preserved.

Claim 6.5.4. For any t ∈ {1, . . . , n} and i ∈ {1, . . . ,deptht}, let tb = birtht(i).
Then spantb(Itb(i)) = spant(It(i)).

Proof. We proceed by induction on t. For t = tb the equality is trivial. Now assume
that equality is true for t− 1 ≥ tb. From Claim 6.5.3 we obtain immediately that
spant−1(It−1(i)) = spant(It(i)). Now we can use the induction hypothesis and
the claim follows.

By application of previous claim, we can show the relation between the span
of two consecutive intervals.

Claim 6.5.5. For any t ∈ {1, . . . , n} and i ∈ {1, . . . ,deptht − 1}, it holds that
spant(It(i)) ≥ 2 · spant(It(i+ 1)).

Proof. We prove this again by induction on t. For t < 8 there is nothing to prove
as the deptht = 1. So let us assume the claim is true for t − 1. We distinguish
two cases.

For i < qt we only have to combine induction hypothesis and Claim 6.5.4.
For i ≥ qt the situation is more complicated. Consider intervals It(i) and

It(i+ 1). Recall that It(i+ 1) = densifyt(It(i), bt(i)). Now consider interval L

which consists of
⌊
|It(i)|

2

⌋
smallest items of It(i) and R which consists

⌊
|It(i)|

2

⌋
greatest items of It(i). It holds that spant(L) ≤ 1

2
· spant(It(i)) or spant(R) ≤

1
2
·spant(It(i)) as L∩R = ∅. However it is obvious that spant(It(i+ 1)) is smaller

than both of L and R. This finishes the proof.

41

Next lemma is an immediate corollary of the previous claim and the termination
condition of Rebuilding Rule.

Lemma 6.5.6. For each t ∈ {1, . . . , n} it holds that deptht ≤ log(m+ 1).

We proceed with the claim which connects the size of the difference of two
consecutive intervals of the chain and bt(i). For any t ∈ {1, . . . , n} and i ∈
{1, . . . ,deptht − 1}, the difference It(i) \ It(i+ 1) is a pair of intervals denoted
Lt(i) (to the left of It(i+ 1)) and Rt(i).

Claim 6.5.7. For any t ∈ {1, . . . , n} and any i ∈ {1, . . . ,deptht − 1},

|Lt(i)| ≥ bt(i) and |Rt(i)| ≥ bt(i).

Proof. We prove this by induction on t. Let tb = birtht(i). For t = tb the claim is
trivial. So let us assume the claim is true for t− 1. We distinguish two cases.

If i < qt then the construction of adversary implies that bt(i) = bt(i− 1),
It(i) = It−1(i) ∪ yt and It(i+ 1) = It−1(i+ 1) ∪ yt. Thus if the claim was true for
It−1(i) and It−1(i+ 1) it has to be true also for It(i) and It(i+ 1)

If i ≥ qt the adversary construction implies that It(i+ 1) = densifyt(It(i), bt(i)).
Thus there are at least bt(i) items smaller than min(It(i+ 1)) in It(i) and also at
least bt(i) items greater than max(It(i+ 1)) in It(i). This finishes the proof.

This lemma reflects a subtle point in the adversary. In the definition of bt(i)
we set it to d|It(i)|/8e only in the case that i > qt−1, while it might seem more
natural to always define bt(i) in this way. However, our actual definition which
sets bt(i) = bt−1(i) for i ≤ qt−1 is needed for the induction step in the above proof.

We now use this to relate the cost of relabeling at step t to the quantities
bt−1(i):

Lemma 6.5.8. If A is lazy then for any t ∈ {1, . . . , n}, |Relt| ≥
∑deptht−1

i=qt+1 bt−1(i).

Proof. If qt = deptht−1 then the sum on the right hand side of the inequality
evaluates to zero while |Relt| ≥ 1 since yt ∈ Relt.

Thus we may assume qt < deptht−1. From the choice of the critical level we
know that

min(It−1(qt + 1)) ∈ Relt or max(It−1(qt + 1)) ∈ Relt

(or both). Assume min(It−1(qt + 1)) ∈ Relt and set y′ = min(It−1(qt + 1)). (For
max(It−1(qt + 1)) ∈ Relt the proof is symmetric.) Consider interval I such that

I = {y : y ∈ Yt−1 and y′ < y and y < yt}.

42

Since A is lazy we can infer I ⊂ Relt. Additionally, as yt > min(It−1(deptht−1))

it follows that
⋃deptht−1−1

i=qt+1 Lt−1(i) ⊆ I. Thus Claim 6.5.7 implies that

|Relt| ≥ |I|+ 1 ≥ 1 +

deptht−1−1∑
i=qt+1

bt−1(i).

The proof finishes the fact that from construction we know that bt−1(deptht−1) = 1
for each t.

The next step is deriving a lower bound on bt(i).

Lemma 6.5.9. For any t ∈ {1, . . . , n} and i ∈ {1, . . . ,deptht − 1},

64 · bt(i+ 1) ≥ |It(i)| − |It(i+ 1)|.

Proof. For t < 8, there is no i ∈ {1, . . . ,deptht − 1} so the lemma is true trivially.
Thus, consider t ≥ 8 and assume that claim is true for t− 1. We distinguish two
cases:

If i < qt then the construction of adversary implies that bt(i) = bt−1(i), It(i) =
It−1(i) ∪ yt and It(i+ 1) = It−1(i+ 1) ∪ yt. Thus if the claim was true for It−1(i)
and It−1(i+ 1) it has to be true also for It(i) and It(i+ 1).

If i ≥ qt (and i ≤ deptht − 1) we first notice that |It(i)| ≥ 8 which follows
from the construction. Thus

bt(i) = d|It(i)|/8e ≤ |It(i)|/4,

which immediately implies

|It(i+ 1)| = b(|It(i)| − 2 · bt(i))/2c ≥ b|It(i)|/4c ≥ |It(i)|/8.

The adversary definition also implies

bt(i+ 1) = d|It(i+ 1)|/8e ≥ |It(i+ 1)|/8.

Connecting these facts together we obtain

bt(i+ 1) ≥ |It(i)|/64 ≥ (|It(i)| − |It(i+ 1)|)/64.

The lemma follows immediately.

Corollary 6.5.10. For any t ∈ {1, . . . , n} and j ∈ {1, . . . ,deptht − 1},
deptht∑
i=j+1

bt(i) ≥
1

64
· |It(j)| −

1

8
.

43

Proof. For fixed t, sum the inequality in Lemma 6.5.9 for i from j to deptht − 1,
and note that It(deptht) < 8. Then divide through by 64.

We now come to the main lower bound of this section.

Corollary 6.5.11. Let A be a lazy algorithm with parameters (n,m). Let sequence
(y1, y2, . . . , yn) be obtained by Adversary(A, n,m), Then

χA ((y1, y2, . . . , yn),m) ≥ 1

64

n∑
t=1

|It−1(qt)| −
n

8
.

Proof. χA ((y1, y2, . . . , yn),m) is at least
∑n

t=1 |Relt|. Now combine Lemmas 6.5.8
and Corollary 6.5.10. (For t such that qt = deptht we use the fact that |Relt| >
0 > 1

64
· |It−1(qt)| − 1

8
.)

6.6 Prefix Bucketing

We start by a definition of the prefix bucketing. A bucket configuration for k
buckets and t items is a sequence a(1), . . . , a(k) of nonnegative integers summing
to t. One should think of a(i) as the number of items in bucket i.

Given a bucket configuration a(1), . . . , a(k), placing a new item in bucket p
transforms the configuration as follows: A new item is added to bucket p and
all items in buckets higher than p are moved to bucket p. Buckets i > p are
unchanged. Formally the configuration b produced from a by the placement p
satisfies:

• b(i) = a(i) for i > p.

• b(p) = 1 +
∑

i≤p a(p), and

• b(i) = 0 for i < p,

A prefix bucketing of n items into k buckets is a sequence a0, a1, . . . , an such that
each at is a bucket configuration of t items into k buckets, and there is a sequence
p1, . . . pn of integers in {1, . . . , k} such that for each t ∈ {1, . . . , n}, at is obtained
from at−1 by placing a new item in bucket pt according to the transformation
defined above. The sequence p1, . . . , pn is called the placement sequence of the
bucketing.

The cost of the bucketing a0, a1, . . . , an is c(a0, a1, . . . , an) =
∑n

t=1 at(pt).

44

6.7 Connecting Bucketing to Online Labeling

In this section we show that given any lazy online labeling algorithm A, we can
use the adversary defined in the previous section to construct a prefix bucketing
whose cost provides a lower bound on the cost of A in labeling the sequence
Y = {y1, . . . , yn} produced by the adversary.

Fix a lazy online labeling algorithm A and for 1 ≤ t ≤ n, let ft, It(i),Relt, qt, yt
and I0(1) be as defined by the Adversary(A, n,m) (Figure 6.1). Recall that Yn
denotes the set {y1, y2, . . . , yn}.

Set k = dlog(m+1)e. For integer i ∈ {1, . . . , k} we define ī to be ī = (k+1)−i.
For t = 0, 1, . . . , n we define a sequence (At(i) : 1 ≤ i ≤ k) of subsets of Yn as
follows: For all i = 1, . . . , k, At(i) = ∅. For t > 0:

• At(i) = At−1(i), for all i ∈ {q̄t + 1, . . . , k},

• At(q̄t) = {yt} ∪
⋃
i≤q̄t At−1(i), and

• At(i) = ∅, for all i ∈ {1, . . . , q̄t − 1}.

For each t ∈ {1, . . . , n}, let at = at(1), . . . , at(k) be the sequence defined by
at(i) = |At(i)|. It is easy to see (by induction on t) that a0, . . . , an is a prefix
bucketing of n items into k buckets with placement sequence q̄1, . . . , q̄n. The cost
of this bucketing is c(a0, a1, . . . , an) =

∑n
i=1 |At(q̄t)|. Our next step is to relate this

cost to the cost of online labeling.
We start by observing:

Lemma 6.7.1. Let k = max{deptht′ , t
′ ∈ {1, . . . , n}}. Then for any t ∈ {1, . . . , n}

and i ∈ {1, . . . ,deptht}, At(̄i) ⊆ It(i) and for j ∈ {deptht + 1, . . . , k} it holds
that At(j̄) = ∅.

Proof. We prove the claim by induction on t. For t = 1, the only non-empty set is
A1(k) = {y1} so the claim is true. Let assume the claim is true for t−1 ≥ 1. Thus
we know that At−1(̄i) ⊆ It−1(i) for i ∈

{
1, . . . ,deptht−1

}
. Now we distinguish

three cases:

• For i ∈ {qt + 1, . . . , k}: At(̄i) = ∅ and thus it is surely a subset of It(i).

• For i = qt: At(q̄t) = {yt} ∪
⋃
j≤q̄t At−1(j). Since At−1(j) ⊆ It−1(j̄) ⊆ It−1(qt)

for each j ≤ q̄t and It(qt) = {yt} ∪ It−1(qt) we are done.

• For i ∈ {1, . . . , qt − 1}: At(̄i) = At−1(̄i) while It(i) = {yt} ∪ It−1(i) and
therefore the claim follows immediately.

45

This lemma actually proves more than we need, but it reflects nicely the relation
between the labeling and the bucketing.

However we only need to show, that for each t ∈ {1, . . . , n}, |It−1(qt)| ≥
|At(q̄t)| − 1. This follows immediately from previous lemma and the fact that
It(qt) = {yt} ∪ It−1(qt). Combining this with Corollary 6.5.11 we obtain the fol-
lowing connection between the cost of online labeling and prefix bucketing. Recall
that for constructing the sequence (y1, y2, . . . , yn) we used Adversary(A, n,m).

Lemma 6.7.2. Let the prefix bucketing a0, a1, . . . , an be defined by at(i) = |At(i)|,
for all t = 0, . . . , n and i = 1, . . . , k. The cost c(a0, a1, . . . , an) of the bucketing
satisfies:

χA ((y1, y2, . . . , yn),m) ≥ 1

64
· c(a0, a1, . . . , an)− 9

64
n.

6.8 Lower Bound for Bucketing

In this section we derive a lower bound (Lemma 6.8.13) on the cost of any prefix
bucketing. To do so we map any prefix bucketing to a k-tuple of ordered rooted
trees. We prove a lower bound on the sum of the depths of the nodes of the trees,
and this will imply a lower bound for the cost of the bucketing.

Ordered trees An ordered rooted tree is a rooted tree where the children of each
node are ordered from left to right. Since these are the only trees we consider, we
refer to them simply as trees. The i-th subtree of T is the tree rooted in the i-th
child of the root from the left. If the root has less than i children, we consider
the i-th subtree to be empty. The number of nodes of T is called its size and is
denoted |T |. The depth of a node is one more than its distance to the root, e.g.,
the root has depth 1. The depth of a tree is the maximum depth of its nodes. The
cost of T , denoted κ(T), is the sum of the depths of its nodes. The cost and size
of an empty tree is defined to be zero.

To each prefix bucketing a = a0, a1, . . . , an into k buckets, we associate a k-
tuple of trees Ta(1), Ta(2), . . . , Ta(k) inductively as follows: The trivial bucketing
a = a0 is mapped to the k-tuple of empty trees. For bucketing a = a0, a1, . . . , an
with placement sequence q1, . . . , qn let a′ be the bucketing a0, a1, . . . , an−1, and
assume Ta′ has been defined. We define Ta′ by:

• For 1 ≤ i < qn, Ta(i) = Ta′(i).

• Ta(qn) consists of a root node whose children are the non-empty trees among
Ta′(qn), Ta′(qn + 1), . . . , Ta′(k) ordered left to right by increasing index.

• Ta(i) is an empty tree for qn < i ≤ k.

46

We make several simple observations about the trees assigned to a bucketing.
Recall, that for integer i ∈ {1, . . . , k} we define ī to be ī = (k + 1)− i

Proposition 6.8.1. For any positive integer k, if a = a0, a1, . . . , an is a prefix
bucketing into k buckets then for each i ∈ {1, . . . , k}, |Ta(i)| = an(̄i).

Proof. The proof is straightforward by induction on n.

The next lemma relates the cost of bucketing to the cost of its associated trees.

Lemma 6.8.2. For any positive integer k, if a = a0, a1, . . . , an is a prefix bucketing
into k buckets then c(a) =

∑k
i=1 κ(Ta(i)).

Proof. By induction on n. For n = 0, both sides of the equality are 0. Suppose
n ≥ 1 and assume that the claim is true for n − 1. Let a′ = a0, a1, . . . , an−1 and
qn be as in the definition of prefix bucketing.

c(a) = c(a′) + 1 +

q̄n∑
i=1

an−1(i) =
k∑
i=1

κ(Ta′(i)) + 1 +
k∑

i=qn

|Ta′(i)|

=

qn−1∑
i=1

κ(Ta(i)) + 1 +
k∑

i=qn

(κ(Ta′(i)) + |Ta′(i)|)

where the second equality uses the induction hypothesis with Proposition 6.8.1,
and the last equality follows from the definition of Ta(i) for i = 1, . . . , qn − 1. For
i ≥ qn the depth of each node in Ta′(i) increases by one when it becomes a child
of Ta(qn), hence

κ(Ta(qn)) = 1 +
k∑

i=qn

(κ(Ta′(i)) + |Ta′(i)|)

For i > qn, κ(Ta(i)) = 0 so the lemma follows.

Thus to get a lower bound on the cost of a prefix bucketing it suffices to prove
a lower bound on the sum of the costs of the trees that occur in the associated k-
tuple. The following definition will help describe the structure of trees that occur
in such a k-tuple.

Definition 6.8.3 (k-admissible). Let k be a positive integer. The empty tree is
k-admissible. A non-empty tree T is k-admissible if its root has at most k children
and the i-th non-empty subtree of T is (k + 1− i)-admissible.

For example, T is 1-admissible if and only if T is empty or a rooted path. We
collect some basic properties of k-admissibility.

47

Lemma 6.8.4. Let T be a (rooted ordered) tree and k ≥ 1, and suppose T is
k-admissible. Let v be a leaf of T .

1. If k′ > k then T is k′-admissible.

2. If v is deleted from T then the resulting tree is k-admissible.

3. If a new node is added as a child of v then the resulting tree is k-admissible.

4. If T has at least two nodes and k ≥ 2, then the tree obtained from T by
removing its first subtree is (k − 1)-admissible.

Proof. The first and last parts are essentially immediate from the definition of
k-admissibility. We prove the other two parts by induction on |T |.

Let T ′ be the tree resulting from deleting v and T ′′ be the tree resulting from
adding a child to v. If |T | = 1 then T , T ′ and T ′′ are k-admissible for all k ≥ 1.
Suppose |T | > 1. Let v belong to the i-th subtree T (i) of T . By definition of k-
admissible, Ti is (k− i+1)-admissible, and by induction the corresponding subtree
T ′′(i) is also (k− i+ 1)-admissible. It follows immediately that T ′′ is k-admissible.
If T (i) consists of a single vertex, namely v, then by removing it, the j-th subtree of
T (which must be (k− j+ 1)-admissible) becomes the (j−1)-st subtree of T ′ (and
is (k − (j − 1) + 1)-admissible by the first part) so T ′ is k-admissible. Otherwise,
the subtree T ′(i) that corresponds to T (i) is non-empty and by induction it is
(k − i + 1)-admissible. Since all other subtrees of T ′ are the same as in T , T ′ is
k-admissible.

The connection of admissibility to prefix bucketing is given by the following
proposition, which is obtained by an easy induction on n (using the first observa-
tion in Lemma 6.8.4):

Proposition 6.8.5. For any positive integer k, if a = a0, a1, . . . , an is a prefix
bucketing into k buckets then for each i ∈ {1, . . . , k}, Ta(i) is (k+1−i)-admissible.

Let us define µ(n, k) to be the minimum cost of a k-admissible tree of n vertices.

Proposition 6.8.6. For any bucketing a of n items into k buckets, we have c(a) ≥
µ(n, k)− n+ 1.

Proof. Modify a to the bucketing b = b0,b1, . . . ,bn where bi = ai for i < n and
bn = (0, 0, . . . , 0, n). This corresponds to placing the final item in bucket 1. This
can increase the cost by at most n− 1 so c(a) ≥ c(b)− n+ 1. The first tree U in
the k-tuple Tb(1) has size n and is k-admissible by Proposition 6.8.5. By Lemma
6.8.2, c(b) ≥ κ(U) which is at least µ(n, k).

It remains to give a lower bound on µ(n, k).

48

Lemma 6.8.7. Let d be a positive integer and T be an arbitrary rooted tree with
all leaves of depth at least d. Then κ(T) ≥ (d+1)

2
· |T |.

Proof. Let ni denote the number of nodes of T at the depth i = 1, . . . , d − 1,
and let nd denote the number of all nodes at depth at least d. Then it holds
|T | = n1+n2+· · ·+nd. Since each node of T at depth i < d has at least one child at
depth i+ 1, we have 0 ≤ n1 ≤ n2 ≤ · · · ≤ nd. Clearly, c(T) ≥

∑d
i=1 ini. Given the

constraints, this sum is minimized (over reals) when n1 = n2 = · · · = nd = |T |/d.

Thus c(T) ≥ d(d+1)
2
· |T |
d

.

A k-admissible tree may have some leaves at low depth, so the above bound is
not immediately useful, so we need the following:

Definition 6.8.8 (Balanced tree). A tree of depth d is balanced if all its leaves
are of depth d or d− 1.

Lemma 6.8.9. Let T be a k-admissible tree of size n having the minimum cost
µ(n, k). Then T is balanced.

Proof. Let d be the depth of T . Suppose T is unbalanced. Let u be a leaf of
depth at most d − 2 and let v be a leaf of depth d. Let T ′ be the tree obtained
by removing v and reattaching v as a child of u. Then κ(T ′) < κ(T), and by the
second and third parts of Lemma 6.8.4, T ′ is k-admissible which contradicts the
minimality of κ(T). Thus T is balanced.

Lemma 6.8.10. Let k, d ≥ 1. If T is a k-admissible tree of depth d, then |T | ≤(
k+d−1
k

)
.

Proof. If k = 1 then T must be a rooted path of depth d and clearly |T | = d ≤
(
d
1

)
.

For k ≥ 2, we prove the result by induction on |T |. If |T | = 1 the result is
trivial so assume |T | ≥ 2. Let L be the first subtree of T and let R be the
tree created by removing L from T . By the definition of k-admissibility L is a
k-admissible tree of depth at most d − 1, and by the last part of Lemma 6.8.4,
R is a (k − 1)-admissible tree of depth at most d. By the induction hypothesis,
|T | = |L|+ |R| ≤

(
k+d−2
k

)
+
(
k+d−2
k−1

)
=
(
k+d−1
k

)
.

Corollary 6.8.11. For any n ≥ k ≥ 1, µ(n, k) is at least n(w + 1)/2 where w is
the smallest integer such that

(
k+w
k

)
≥ n.

Proof. Let T be a k-admissible tree of size n having minimum cost. Let d be
the depth of T . By Lemma 6.8.10 we have

(
k+d−1
k

)
≥ n and so d − 1 ≥ w. By

Lemma 6.8.9, T is balanced so all leaves are at depth at least d − 1 ≥ w and so
by Lemma 6.8.7, κ(T) ≥ (w + 1)n/2.

49

Lemma 6.8.12. Let n, k, w be integers such that n ≥ 2 and k ≥ log n. If
(
k+w
k

)
≥

n, then w ≥ logn
4(log 8k−log logn)

.

Proof. If w ≥ k then the conclusion holds, so assume w ≤ k. Recall that log
(
r
s

)
≤

H(s/r)r whereH stands for the binary entropy function defined on [0, 1] byH(x) =
x log 1

x
+ (1 − x) log 1

1−x , where the base of the logarithm is 2. For x ∈ (0, 1/2],

H(x) ≤ 2x log 1
x
. Therefore:

log(n) ≤ log

(
k + w

k

)
= log

(
k + w

w

)
≤ (k + w)H

(
w

k + w

)
≤ 2w log

(
k + w

w

)
≤ 2w log

(
2k

w

)
.

Defining a = log(n)/w, we get

a ≤ 2 log

(
2ak

log(n)

)
= 2(log(8k) + log(a/4)− log log(n)).

Using log(x) < x we get

a ≤ 2(log(8k) + a/4− log log(n))
a

2
≤ 2(log(8k)− log log(n)),

which implies the claimed bound on w.

We now deduce the following lower bound on the cost of prefix bucketing:

Lemma 6.8.13. Let k, n be positive integers such that k ≥ log n. The cost of any
prefix bucketing of n items into k buckets is at least n logn

8(log 8k−log logn)
− n.

Proof. By Proposition 6.8.6, the cost of any such bucketing is at least µ(n, k)−n,
and by Corollary 6.8.11, this is at least nw

2
−n where w is the smallest integer such

that
(
k+w
k

)
≥ n, which is at least logn

4(log 8k−log logn)
by Lemma 6.8.12.

Proof of Lemma 6.5.1. By Lemma 6.7.2, the cost incurred by a lazy algorithm on
the sequence y1, y2, . . . , yn (constructed by Adversary(A, n,m)) is lower-bounded
by

χA ((y1, y2, . . . , yn),m) ≥ 1

64
· c(a0, a1, . . . , an)− 9

64
n

50

where a0, a1, . . . , an is a certain prefix bucketing of n items into k = dlog(m+ 1)e
buckets (Claim 6.5.6). The previous lemma provides a lower bound on the cost of
any such bucketing. Using that lower bound we get:

χA ((y1, y2, . . . , yn),m) ≥ 1

512
· n log n

3 + logdlog(m+ 1)e − log log n
− n

6
.

51

52

7. Randomized Online Labeling
with Polynomially Many Labels

7.1 Introduction

In this chapter we prove an Ω (n · log(n)) lower bound on the expected number of
moves for inserting n items for randomized online labeling algorithms. This lower
bound is valid for m between cn and nc (c > 1) for any randomized online labeling
algorithm. For m = nc, this matches the known deterministic upper bounds up to
constant factors, and thus randomization provides no more than a constant factor
advantage over determinism.

Prior to our joint work with Michal Koucký and Michael Saks [11], on which
this chapter is based, all lower bound proofs considered only deterministic algo-
rithms. There are however many online problems where randomized algorithms
perform provably better than deterministic ones. For example, the best determin-
istic algorithm for the paging problem with k pages has competitive ratio k but
there are randomized algorithms having competitive ratio Θ(log(k)) [8]. Thus it
is a natural question whether there exists randomized algorithms which are (in
expectation) better than deterministic.

Thorough this chapter we use a model in which the cost of a randomized
labeling algorithm is the worst case over all input sequences of a given length
n of the expected number of moves made by the algorithm. This corresponds
to running the algorithm against an oblivious adversary (see [8]) who selects the
input sequence having full knowledge of the algorithm, but not of the random bits
flipped in the execution of the algorithm.

Unlike many other lower bounds for non-uniform computation models, our
proof does not use Yao’s principle. Yao’s principle says (roughly) that to prove a
lower bound on the expected cost of an arbitrary randomized algorithm it suffices
to fix a distribution over inputs, and prove a lower bound on the expected cost
of a deterministic algorithm against the chosen distribution. Rather than use
Yao’s principle, our proof takes an arbitrary randomized algorithm and selects a
(deterministic) sequence that is hard for that algorithm.

The construction and analysis of the hard sequence follow the same overall
strategy of the lower bound in Chapter 6 for deterministic algorithms in the case
of polynomially many labels. This involves relating online labeling to a bucketing
games. We define a map (an adversary) which associates to a labeling algorithm A
a hard sequence of items. We then show that the behavior of the algorithm on this
hard sequence can be associated to a strategy for playing a particular bucketing

53

game, such that the cost incurred by the algorithm on the hard sequence is bounded
below by the cost of the associated bucketing game strategy. Finally we prove a
lower bound on the cost of any strategy for the bucketing game, which therefore
gives a lower bound on the cost of the algorithm on the hard input sequence.

In extending this argument from the case of deterministic algorithms to the
randomized case, each part of the proof requires significant changes. The adver-
sary which associates an algorithm to a hard sequence requires various careful
modifications. The argument that relates the cost of A on the hard sequence to
the cost of an associated bucketing strategy does not work for the original version
of the bucketing game, and we can only establish the connection to a new variant
of the bucketing game called tail-bucketing. Finally the lower bound proof on the
cost of any strategy for tail-bucketing is quite different from the previous lower
bound for the original version of bucketing.

7.2 The Main Theorem

In this section we state the main theorem of this chapter. Recall that randomized
online labeling algorithm A is a probability distribution on deterministic online
labeling algorithms. The cost χA (n,m, r) is the expected cost of the algorithm
sampled from this distribution.

Theorem 7.2.1. For any constant C0, there are positive constants C1 and C2

so that the following holds. Let A be a randomized algorithm with parameters
(n,m, r), where n ≥ C1, r ≥ 2n−1 and m ≤ nC0. Then χA (n,m, r) ≥ C2n log(n).

This theorem will be an immediate consequence of Lemma 7.5.1 in Section 7.5.

7.3 Mapping a Randomized Algorithm to a Hard Input Se-

quence

We now give an overview of the adversary which maps an algorithm to a hard
input sequence y1, . . . , yn. The adversary is deterministic. Its behavior will be
determined by the expected behavior of the randomized algorithm. Even though
we are choosing the sequence obliviously, without seeing the actual responses of
the algorithm, we view the selection of the sequence in an online manner. We
design the sequence item by item. Having selected the first t − 1 items, we use
the known randomized algorithm to determine a probability distribution over the
sequence of labellings determined by the algorithm after each step. We then use
this probability distribution to determine the next item, which we select so as to
ensure that the expected cost incurred by the algorithm is large.

54

The adversary will maintain an interval chain consisting of a nested sequence
of intervals of items inserted so far. The chain serves a dual purpose: the chain
after step t is used by the adversary to select the item inserted at step t+1, and the
sequence of chains over time provides a way to lower bound the total (expected)
cost incurred by the algorithm.

This chain is denoted1

It(1) ⊃ Tt(2) ⊃ It(2) ⊃ Tt(3) ⊃ · · · ⊃ Tt(d) ⊃ It(d).

The interval It(1) equals Yt ∪ {minU ,maxU}, the final interval It(d) has between
2 and 6 elements. The next item to be inserted is selected to be an item that is
between two items in the final interval It(d).

The chain at step t is constructed as follows. The chain for t = 0 has depth0 =
1 and I0(1) = {minU ,maxU}. The chain at step t ≥ 1 is constructed based on the
chain at the previous step t − 1 and the expected behavior of the algorithm on
y1, . . . , yt.

We build the intervals for the chain at step t in order of increasing level (i.e.,
decreasing size). Intervals are either preserved (carried over from the previous
chain, with the addition of yt) or rebuilt. To specify which intervals are preserved,
we specify a critical level for step t, qt which is at most the depth deptht−1 of
the previous chain. We’ll explain the choice of qt below. At step t, the intervals
Tt(i) and It(i) for i ≤ qt are preserved, which means that it is obtained from the
corresponding interval at step t − 1 by simply adding yt. The intervals Tt(i) and
It(i) for i ≥ qt are rebuilt. The rule for rebuilding the chain for i > qt is defined
by induction on i as follows: Given It(i− 1), Tt(i) is defined to be either the first
or second half of It(i− 1), depending on which of these intervals is more likely to
have a smaller range of labels (based on the distribution over labels determined by
the given algorithm). More precisely, we look at the median item of It(i− 1) and
check whether (based on the randomized labeling) it is more likely that its label
is closer to the label of the minimum or to the maximum element of It(i− 1). If
the median is more likely to have label close to the minimum we pick the first half
as Tt(i) otherwise the second half. Having chosen Tt(i), we take It(i) to be the
middle third of items in Tt(i). This process terminates when |It(i)| < 7 and the
depth deptht of the chain is set to this final i. The adversary selects the next
requested item yt+1 to be between two items in It(deptht).

This construction of the chain is similar (except we do not have two types
of segments) to that used in Chapter 6 in the deterministic case. An important
difference comes in the definition of the critical level qt. In the deterministic case
the critical level is the smallest index i such that neither endpoint of It(i) was

1Recall, we use subscript to denote step and we use (·) notation to denote a particular coor-
dinate of such a vector or sequence at that step.

55

moved by the algorithm when inserting yt. In the randomized case we need a
probabilistic version of this: the critical level is the smallest index i such that the
probability that either endpoint of Tt−1(i) was moved since the last step when it
was rebuilt is less than 1/4.

One of the crucial requirements in designing the adversary is that the chain nev-
er grows too deep. Note that when we rebuild Tt(i) it’s size is at most |It(i− 1)|/2
and when we rebuild It(i) its size is at most |Tt(i)|/3. This suggests that as we
proceed through the chain each interval is at most 1/2 the size of the previous
and so the depth is at most log(n). This reasoning is invalid because during a
sequence of steps in which an interval in the chain is not rebuilt its size grows by
1 at each step and so the condition that the interval is at most half the size of its
predecessor may not be preserved. Nevertheless we can show that the depth never
grows to more than 4 log(m+ 1) levels.

In the deterministic case, Lemma 5.4.2 and the definition of the critical level
qt can be used to show that when the algorithm responds to the item yt it moved
at least a constant fraction of the items belonging to It−1(qt) and so the total cost
of the algorithm is at least DLB = Ω(

∑
t |It−1(qt)|) (Corollary 6.5.11). In the

randomized case we get a related bound that the expected total number of moves
is RLB = Ω(

∑
t |It−1(qt) \ It−1(qt + 1)|) (Lemma 7.5.3). So the cost incurred by

the algorithm is related to the extent of changes in the chain.

7.4 Bucketing Game

The next step in the analysis is to define bucketing games, and to show that the
lower bound on the cost of the algorithm given in the previous paragraph is an
upper bound on the cost of an appropriate bucketing game.

Recall, the prefix bucketing game with n items and k buckets is a one player
game. The game starts with k empty buckets indexed 1, . . . , k. At each step the
player places an item in some bucket p. All the items from buckets 1, . . . , p − 1
are then moved into bucket p as well, and the cost is the number of items in
buckets 1, . . . , p before the merge, which is the number of items in bucket p after
the merge. The total cost is the sum of the costs of each step. The goal is to
select the sequence of indexes p so that we would minimize the total cost. In
Chapter 6 (see also [2]) it is shown that any deterministic labeling algorithm could
be associated to a bucketing strategy such that the cost of the labeling algorithm
against our adversary is at least a constant times the cost of the bucketing strategy.
This result is deduced using the lower bound of Ω(

∑
t |It−1(qt)|) for the cost of the

algorithm mentioned earlier. It was also shown in Chapter 6 (see also [2]) that
the minimal cost of any bucketing strategy (for more than 2 log(n) buckets) is
Ω(n log(n)/(log(k) − log log(n)). These results together gave the lower bound on

56

deterministic labeling.

We use the same basic idea for the randomized case, but require several sig-
nificant changes to the game. The first difficulty is that the lower bound on the
cost of the randomized algorithm stated earlier, RLB, is not the same as the lower
bound DLB that was known for deterministic algorithms. While DLB was shown
to be at least the minimal cost of the prefix bucketing, this is not true for RLB.
To relate RLB to bucketing, we must replace the cost function in bucketing by
a smaller cost function, which is the number of items in the bucket p before the
merge, not after. In general, this cost function is less expensive (often much less
expensive) than the original cost function and we call it the cheap cost function.
The argument relating the cost of a randomized algorithm to a bucketing strategy
requires that the number of buckets be at least 4 log(m) buckets. If we could prove
a lower bound on the cost of bucketing under the cheap function similar to the
bound mentioned above for the original function this would be enough to deduce
the desired lower bound on randomized labeling. However with this cheap cost
function this lower bound fails: if the number of buckets is at least 1+log(n), there
is a bucketing strategy that costs 0 with the cheap cost function! (For example
a strategy which always picks p to be the smallest index of an empty bucket has
cost zero; it emulates incrementing a binary counter.) So this will not give any
lower bound on the cost of a randomized labeling algorithm

We overcome this problem by observing that we may make a further modifica-
tion of the rules for bucketing and still preserve the connection between the cost of
a randomized algorithm against our adversary and the cheap cost of a bucketing.
This modification is called tail bucketing. In a tail bucketing, after merging all the
items into the bucket p, we redistribute these items back among buckets 1, . . . , p,
so that bucket p keeps 1−β fraction of the items and passes the rest to the bucket
p− 1, bucket p− 1 does the same, and the process continues down until bucket 1
which keeps the remaining items. It turns our that our adversary can be related
to tail bucketing for β = 1/6. We can prove that the minimal cheap cost of tail
bucketing is Ω(n log(n)) when k = O(log(n)). This lower bound is asymptotically
optimal and yields a similar bound for randomized online labeling.

The lower bound proof for the cheap cost of tail bucketing has some interest-
ing twists. The proof consists of several reductions between different versions of
bucketing. The reductions show that we can lower bound the cheap cost of tail
bucketing with C log(n) buckets (for any C) by the cheap cost of ordinary prefix
bucketing with k = 1

4
log(n) buckets. Even though the cheap cost of ordinary buck-

eting dropped to 0 once k = log(n) + 1, we are able to show that for k = 1
4

log(n)
there is a θ(n log(n)) bound for ordinary bucketing with the cheap cost.

57

7.5 Adversary Construction

We now specify an adversary Adversary(A, n,m) which given an online label-
ing algorithm A, a length n, and label space size m, constructs a item sequence
y1, y2, . . . , yn from the universe U = {1, . . . , 2n− 1}. We use similar notation as in
Chapter 6.

We think of the adversary as selecting y1, . . . , yn online, but after each step
the adversary only knows a probability distribution over the configurations of
the algorithm. It is important to keep in mind that the adversary knows the
randomized algorithm A but does not know the random coins of the algorithm.

During the construction of the adversary sequence y1, . . . , yn, the adversary
will maintain a nested sequence of intervals of {y1, . . . , yt} ∪ {minU ,maxU}:

It(1) ⊃ Tt(2) ⊃ It(2) ⊃ Tt(3) ⊃ · · · ⊃ Tt(deptht) ⊃ It(deptht).

called the interval chain at step t. Each of the intervals will be of size at least 2
and it will form and interval of Yt∪{minU ,maxU}. The depth deptht of the chain
may vary with t. The intervals It(i) and Tt(i) are said to be at level i in the chain.

To avoid having to deal with special cases in the description of the adversary,
recall that we assume the existence of items minU and maxU which are inserted
to positions 0 and m + 1 for no cost and which cannot be moved by the algo-
rithm. At the beginning of step t, having chosen items Yt−1 and having construct-
ed the chain It−1(1) ⊃ · · · ⊃ It−1(deptht−1), the adversary will select yt to be
min(It−1(deptht−1) + 2n−t). It is easy to see by induction on t that the items be-
longing to Yt∪{minU ,maxU} are multiples of 2n−t, and it follows that yt is strictly
between the smallest and second smallest elements of It−1(deptht−1). Therefore
all of the chosen items are distinct.

We need to specify how we determine the chain at step t. The pseudo-code for
the adversary is given in Figure 7.1.

The chain for t = 0 has depth0 = 1 and I0(1) = {0, 2n}. The chain at
step t ≥ 1 is constructed based on the chain at the previous step t − 1 and the
expected behavior of the algorithm on y1, . . . , yt as reflected by the joint probability
distribution over the sequence of functions fA,1, . . . , fA,t.

We build the intervals for the chain at step t in order of increasing level (i.e.,
decreasing size). Intervals are either preserved (carried over from the previous
chain, with the addition of yt) or rebuilt. To specify which intervals are preserved,
we specify a critical level qt for step t, which is at least 1 and at most the depth
deptht−1 of the previous chain. We’ll explain the choice of qt below. At step t, the
intervals It(i) for i ≤ qt are preserved, which means that It(i) is obtained simply by
adding yt to It−1(i), and the rest are rebuilt. In particular, for t ≥ 7, It(1) is always
preserved, and is equal to Yt ∪ {minU ,maxU}. The rule for rebuilding the chain

58

for i > qt is defined by induction on i as follows: If |It(i− 1)| < 7 then the chain is
terminated with deptht = i−1. Otherwise, consider the labeling of It(i− 1) by ft
(which is randomly distributed depending on A). If the probability that It(i− 1) is
left-leaning with respect to ft is at least 1/2, then set Tt(I) = left-half(It(i− 1))
otherwise Tt(i) = right-half(It(i− 1)). Set It(i) = middle-third(Tt(i− 1))).
Observe that since |It(i− 1)| ≥ 7, we have |Tt(i)| ≥ 4 and |It(i)| ≥ 2.

Here we use the following notation. Let I ⊆ Y ⊆ U . We write med(I) for the
median of I which we take to be the d|I|/2e-th largest element of I. We define
left-half(I) = {y ∈ I|y ≤ med(I)} and right-half(I) = {y ∈ I|y ≥ med(I)}
(note that med(I) is contained in both). Also define left-third(I) to be the
smallest b|I|/3c elements, right-third(I) to be the largest b|I|/3c elements and
middle-third(I) = I − left-third(I) − right-third(I). Given a labeling f of Y
and an item interval I of Y , we say that I is left-leaning with respect to f if med(I)
has a label that is closer to the label of min(I) than it is to the label of max(I),
i.e. f(med(I))− f(min(I)) ≤ f(max(I))− f(med(I)). It is right-leaning otherwise.

It remains to explain how the critical level qt is selected. When constructing
each interval It(i) of the chain for i ≥ 2, the adversary defines a parameter birtht(i)
which is set to t if It(i) is rebuilt, and is otherwise set to birtht−1(i). It is easy to see
(by induction on t), that birtht(i) is equal to the largest step u ≤ t such that Iu(i)
was rebuilt. It follows that for each u ∈ {birtht(i), . . . , t}, min(Tu(i)) = min(Tt(i))
and max(Tu(i)) = max(Tt(i)).

Say that item y has stable label during interval {a, . . . , b} if the label fu(y) is
the same for all u in {a, . . . , b}, and has unstable label on {a, . . . , b} otherwise. We
define the event stablet(i) to be the event (depending on A) that both min(Tt(i))
and max(Tt(i)) have stable labels during interval {birtht−1(i), . . . , t}.

We are finally ready to define qt. If there is at least one level i ≥ 2 for which
Pr[stablet(i)] ≤ 3/4, let imin be the least such level, and choose qt = imin − 1.
Otherwise set qt = deptht−1.

Before we describe the Adversary(A, n,m) (Figure 7.1) we first introduce
some notation. Let I ⊆ Y ⊆ U . We write med(I) for the median of I which we
take to be the d|I|/2e-th largest element of I. We define left-half(I) = {y ∈ I|y ≤
med(I)} and right-half(I) = {y ∈ I|y ≥ med(I)} (note that med(I) is contained
in both). Also define left-third(I) to be the smallest b|I|/3c. Given a labeling f
of Y and an item interval I of Y , we say that I is left-leaning with respect to f if
med(I) has a label that is closer to the label of min(I) than it is to the label of
max(I), i.e. f(med(I)) − f(min(I)) ≤ f(max(I)) − f(med(I)). It is right-leaning
otherwise.

We will prove the following lemma about the adversary, which together with
Lemma 5.4.2 immediately implies Theorem 7.2.1.

59

Adversary(A, n,m)

• I0(1)←− {0, 2n}, depth0 ←− 1

• For t = 1, . . . , n do

– yt ←− min(It−1(deptht−1)) + 2n−t

{Choose Critical Level}
– Consider the sequence of (dependent) random functions f1, . . . , ft pro-

duced by A in response to y1, . . . , yt. If there is an index i ≥ 2 for
which Pr[stablet(i)] ≤ 3/4, let imin be the least such index and let
qt = imin − 1. Otherwise set qt = deptht−1.

– It(1)←− It−1(1) ∪ {yt}
– i←− 2

{Preservation Rule}
– While i ≤ qt do:

∗ Tt(i)←− Tt−1(i) ∪ {yt}
∗ It(i)←− It−1(i) ∪ {yt}
∗ birtht(i)←− birtht−1(i)

∗ i←− i+ 1

{Rebuild Rule}
– While |It(i)| ≥ 7 do:

∗ If It(i− 1) is left-leaning with respect to ft with probability at least
1/2

· Tt(i)←− left-half(It(i− 1))

∗ otherwise

· Tt(i)←− right-half(It(i− 1))

∗ It(i)←−middle-third(Tt(i))

{Record that It(i) and Tt(i) were rebuilt}
∗ birtht(i)←− t

∗ i←− i+ 1

– deptht ←− i− 1

Output: y1, y2, . . . , yn

Figure 7.1: Pseudocode for the adversary

60

Lemma 7.5.1. Let c ≥ 1 be an arbitrary constant and n,m be large enough
integers such that m < (n + 1)c. Let A be a lazy randomized online labeling
algorithm with the range m. Let y1, y2, . . . , yn be the output of Adversary(A, n,m)
(Figure 7.1). Then the cost satisfies:

χA ((y1, y2, . . . , yn),m) ≥ 1

96

(
1

6

)512c2

(n+ 1) log(n+ 1)− n

4
.

The proof of this lemma has two main steps. The first step is to bound the cost
χA ((y1, y2, . . . , yn),m) from below by the minimum cost of a variant of the prefix-
bucketing game. The variant of the game we consider is called tail-bucketing. The
second step is to give a lower bound on the cost of tail-bucketing.

To prove the first step we will need two properties of Adversary(A, n,m).
Adversary(A, n,m) determines y1, y2, . . . , yn and the critical levels q1, . . . , qn.

Lemma 7.5.2. For any t ∈ {1, . . . , n}, deptht ≤ 4 log(m+ 1).

Lemma 7.5.3. The cost of A on y1, y2, . . . , yn satisfies:

χA ((y1, y2, . . . , yn),m) ≥ 1

40

∑
t

|It−1(qt) \ It−1(qt + 1)|,

where the sum ranges over steps t ∈ {1, . . . , n} for which qt < deptht−1.

For the proofs of these two lemmas we need certain random variables associ-
ated with the execution of A on y1, y2, . . . , yn. Since all of the randomness comes
from the distribution over A, the value of each random variable is determined by
the random selection of A, and we sometimes subscript random variables by A to
emphasize this dependence. (We think of randomized algorithms as a probability
distribution of deterministic algorithms.) Furthermore, we replace A by a deter-
ministic algorithm A in the subscript to indicate the value of the random variable
when A = A. We make the following definitions.

• For a pair (i, t) such that i < deptht, shrinkA,t(i) is the 0-1 indicator of the
event that

spanA,t(It(i+ 1)) ≤ spanA,t(It(i))/2.

• Define shrinkA,t =
∑deptht−1

i=1 shrinkA,t(i).

Proof of Lemma 7.5.2. For t = 1 the claim is trivial so assume t > 1. For
any algorithm A, spanA,t(It(1)) = m + 1 and spanA,t(It(deptht)) ≥ 2, and

spanA,t(It(i)) > spanA,t(It(i+ 1)) for i ∈
{

1, . . . ,deptht−1

}
. Therefore shrinkA,t(i)

can be 1 for at most log(m+ 1)− 1 values of i. Thus shrinkA,t ≤ log(m+ 1)− 1.

61

Next we claim and prove below that for i ∈ {1, . . . ,deptht − 1}, Pr[shrinkA,t(i) =
1] ≥ 1/4. This claim implies E [shrinkA,t] ≥ (deptht − 1)/4 which then gives
deptht ≤ 4 log(m+ 1) to complete the proof of the lemma.

So it remains to prove the claim. Consider first the case that i+1 > qt. Intervals
Tt(i+ 1) and It(i+ 1) are rebuilt at step t. By definition of the adversary Tt(i+ 1)
is either left-half(It(i)) or right-half(It(i)). Furthermore this choice is made so
that spant(Tt(i+ 1)) ≤ spant(It(i))/2 with probability at least 1/2 and since
It(i+ 1) ⊆ Tt(i+ 1), Pr[shrinkt(i) = 1] ≥ 1/2.

Next consider the case that i + 1 ≤ qt so that Tt(i+ 1) and It(i+ 1) are
preserved at step t. These intervals were most recently rebuilt at step s =
birtht(i+ 1) = birtht−1(i+ 1) and the endpoints of Tu(i+ 1) are the same for all
u ∈ {s, . . . , t}. Since i+ 1 > 1, s > 1. Since i+ 1 > qs, Pr[shrinks(i) = 1] ≥ 1/2.
We now claim and prove below that if both shrinks(i) and stablet(i+ 1) happen
then shrinkt(i) happens. From this claim, and the assumption that i + 1 ≤ qt
we deduce: Pr[shrinkt(i)] ≥ Pr[shrinks(i) ∩ stablet(i + 1)] ≥ Pr[shrinks(i)] +
Pr[stablet(i+ 1)]− 1 ≥ 1/2 + 3/4− 1 = 1/4, as required.

To see the final claim, assume that the event stablet(i + 1) occurred. For
each endpoint of Tt(i+ 1), its label remained the same under each of the functions
fs, . . . , ft, and by the laziness of the algorithm, it also happened that for each
endpoint of It(i), its label remained the same under each of the functions fs, . . . , ft.
Thus if, in addition, shrinks(i) happens then so does shrinkt(i).

Proof of Lemma 7.5.3. An item-step pair (y, u) is a pair where y ∈ Iu(1). For
each step t such that qt < deptht−1 we will define a set Wt of item-step pairs. The
sets Wt will be disjoint for different steps t and will consist of some set of item-
step pairs (y, u) with u ≤ t. Say that the item-step pair (y, u) is a relabel event if
fu(y) 6= fu−1(y). Define relabst be the (random) number of relabel events in Wt.
It follows that the cost of the algorithm is at least

∑
t:qt<deptht−1

E [relabst]. We

will show that E [relabst] ≥ 1
40
|It(qt) \ It(qt + 1)|, which will suffice to prove the

lemma.

We now defineWt for each t such that qt < deptht−1. Let tb = birtht−1(1 + qt).
For all steps u ∈ {tb + 1, . . . , t− 1} the intervals Tu(1 + qt) are preserved and also
the intervals Iu(1 + qt) are preserved and so from step u− 1 to u they each change
only by the addition of yu. Defining for all steps s and levels i, ∆s(i) = Ts(i)\Is(i),
we have that the sets ∆u(1 + qt) are all the same for each u ∈ {tb, . . . , t− 1}. We
define Wt to be the set of pairs (y, u) with y ∈ ∆u−1(1 + qt) and u ∈ {tb + 1, . . . , t},
i.e., Wt = ∆t−1(1 + qt)× {tb + 1, . . . , t}.

We now show that the sets Wt and Wt′ are disjoint for all pairs of steps t < t′.
Suppose for contradiction that Wt ∩Wt′ 6= ∅. Let t′b = birtht′−1(1 + qt′). Then
{tb + 1, . . . , t}∩ {t′b + 1, . . . , t′} 6= ∅ and so birtht′−1(1 + qt′) = t′b < t. This means
that level 1+qt′ is not rebuilt at step t but level 1+qt is rebuilt at step t, so qt > qt′ .

62

But then this contradicts ∆t−1(1 + qt) ∩ ∆t′−1(1 + qt′) 6= ∅ since ∆t−1(1 + qt) ⊂
Tt−1(1 + qt) ⊂ It−1(1 + qt′) ⊂ It′−1(1 + qt′) while ∆t′−1(1 + qt′)∩It′−1(1 + qt′)) = ∅.

Finally, let us bound E [relabst] from below. By the definition of the adversary
∆t−1(1 + qt) is the union of the two equal-sized intervals left-third(Ttb(1 + qt)) ∪
right-third(Ttb(1 + qt)). By the definition of qt, the probability that both min(Ttb(1 + qt))
and max(Ttb(1 + qt)) have stable label during {tb, . . . , t} is at most 3/4. By the
laziness of the algorithm, on any run in which the left (resp. right) endpoint of
Tt−1(1 + qt) has unstable label during {tb, . . . , t} all items in left-third(Ttb(1 + qt))
(resp. right-third(Ttb(1 + qt))) have unstable label during {tb, . . . , t} and so at
least half the items of ∆t−1(1 + qt) have unstable label during {tb, . . . , t}. Since
this occurs with probability at least 1/4, thus the expected number of relabel
events is at least |∆t−1(1 + qt)|/8.

To complete the proof of the lemma, we show that |∆t−1(1 + qt)| ≥ 1
5
|It−1(qt)\

It−1(1 + qt)|. The sets Iu(qt) \ Iu(1 + qt) are the same for all u ∈ {bt, . . . , t− 1}
and the same is true for the sets ∆u(1 + qt). We compare these two sets for
u = tb. Letting c = |Itb(qt)| we have c ≥ 7 since qt is not the last level at
step tb. Since Ttb(1 + qt) and Itb(1 + qt) are rebuilt, |Ttb(1 + qt)| ≥ dc/2e and
|∆bt(1 + qt)| ≥ 2 b(dc/2e)/3c ≥ c/5 (where the final inequality uses c ≥ 7, and is
tight for c = 10).

7.6 Prefix Bucketing and Tail Bucketing

In addition to prefix bucketing we have seen in Chapter 6 that was originally
defined by Dietz, Seiferas and Zhang [13] we will need several other variants of
the bucketing game. In a bucketing game we have k buckets numbered 1, . . . , k
in which items are placed. A bucket configuration is an arrangement of items in
the buckets; formally it is a mapping C : {1, . . . , k} to the nonnegative integers,
where C(i) is the number of items in bucket i. It will sometimes be convenient
to allow the range of the function C to be the nonnegative real numbers, which
corresponds to allowing a bucket to contain a fraction of an item.

A bucketing game is a one player game in which the player is given a sequence of
groups of items of sizes n1, . . . , n` and must sequentially place each group of items
into a bucket. The case that n1 = · · · = n` = 1 is called simple bucketing. The
placement is done in ` steps, and the player selects a sequence p1, . . . , p` ∈ [1, k]`,
called an (`, k)-placement sequence which specifies the bucket into which each group
is placed.

Bucketing games vary depending on two ingredients, the rearrangement rule
and the cost functions.

When a group of m items is placed into bucket p, the items in the configuration
are rearranged according to a specified rearrangement rule, which is not under the

63

control of the player. Formally, a rearrangement rule is a function R that takes
as input the current configuration C, the number m of new items being placed
and the bucket p into which they are placed, and determines a new configuration
R(C,m, p) with the same total number of items.

The prefix rearrangement rule is as follows: all items currently in buckets below
p are moved to bucket p. We say that items are merged into bucket p. Formally,
the new configuration C ′ = R(C,m, p) satisfies C ′(i) = 0 for i < p, C ′(p) =
C(1) + · · · + C(p) + m and C ′(i) = C(i) for i > p. Most of the bucketing games
we’ll discuss use the prefix rearrangement function, but in Section 7.7 we’ll need
another rearrangement rule.

The cost function specifies a cost each time a placement is made. For the
cost functions we consider the cost of placing a group depends on the current
configuration C and the selected bucket p but not on the number m of items being
placed. We consider four cost functions

• In cheap bucketing, the cost is the number of items in bucket p before the
placement:

costcheap(C, p) = C(p).

• In expensive bucketing, the cost is the number of items in buckets p or higher
before the placement:

costexp(C, p) =
k∑
i=p

C(i).

• For γ ∈ [0, 1], in the γ-discounted bucketing, the cost is:

costγ−disc(C, p) =
k∑
i=p

C(i)γi.

(Note that cost1−disc = costexp.)

• For b ∈ N, in the b-block bucketing, the cost of step t is

costb−block(C, p) =

s(p)∑
i=p

C(i),

where s(p) is the least multiple of b larger or equal to p. (Note that cost1−block =
costcheap and costk−block = costexp.)

64

For completeness we remark that the cost function used in previous work [13, 2]
is the number of items in buckets 1, . . . , p before the placement:

cost(C, p) =

p∑
i=1

C(i).

Fix a rearrangement rule R and a cost function c. A placement sequence
p1, . . . , p` and a load sequence n1, . . . , n` together determine a sequence of configu-
rations B = (B0, B1, . . . , B`), called a bucketing where B0 is the empty configura-
tion and for i ∈ [1, `], Bi = R(Bi−1, ni, pi). Each of these ` placements is charged
a cost according to the cost rule c. We write c[R](p1, . . . , p`|n1, . . . , n`) for the sum∑`

i=1 c(Bi−1, pi), which is the sum of the costs of each of the ` rearrangements that
are done during the bucketing. If R is the prefix rule, we call B a prefix bucketing
and denote the cost simply by c(p1, . . . , p`|n1, . . . , n`). In the case of simple buck-
eting, n1 = . . . = n` = 1, we write simply c[R](p1, . . . , p`) or c(p1, . . . , p`) in the
case of simple prefix bucketing.

7.7 Tail Bucketing and the Online Labeling

We will also need an alternative rearrangement function, called the tail rearrange-
ment rule. The bucketing game with this rule is called tail bucketing. The tail
rearrangement rule Tailβ with parameter β acts on configuration C, bucket p
and group size m by first moving all items below bucket p to bucket p so that
w = C(1)+ · · ·+C(p)+m items are in bucket p (as with the prefix rule), but then
for j from p down to 1, β fraction of the items in bucket j are passed to bucket
j − 1, until we reach bucket 1. (Here we allow the number of items in a bucket to
be non-integral.) So the number of items in bucket j for j ∈ [2, p] is (1− β)βp−jw
and the number of items in bucket 1 is βp−1w.

A bucketing B produced with the tail bucketing rearrangement rule is called a
tail bucketing.

We will consider tail bucketing with the cheap cost function. We will now relate
the expected cost of randomized online labeling algorithm A on the sequence
y1, y2, . . . , yn which was produced by our adversary Adversary(A, n,m) to the
cost of a specific tail bucketing instance.

For a lazy online labeling algorithm A and t = 1, . . . , n, let fA,t, It(i), qt, yt
be as defined by the Adversary(A, n,m) and the algorithm A. Denote Y =
{y1, y2, . . . , yn}. Set k = b4 log(m+ 1)c. Let q1, . . . , qn be the sequence of critical
levels produced by the algorithm. For integer i ∈ [k] define ī to be ī = (k+ 1)− i.
Define the placement sequence p1 = q̄1, . . . , pn = q̄n, and consider the tail bucketing
B0, . . . , Bn determined by this placement sequence with parameter β = 1/6, and

65

all group sizes 1 (so it is a simple bucketing). The following lemma is used to
relate the cost of online labeling to the tail bucketing.

Lemma 7.7.1. Let {It(i) : 1 ≤ t ≤ n, 1 ≤ i ≤ dt} be the interval chain com-
puted by Adversary(A, n,m) and BA = (B0, . . . , Bn) be the corresponding tail-
bucketing. Then for any t ∈ [0, n] and any j ∈ [1, dt]:

|It(j) \ It(j + 1)| ≥ Bt(j̄)− 3.

Here, for the case j = dt, we take It(j + 1) to be ∅.

Proof. We will actually prove:
∑
i≤j̄

Bt(i)

+ 2 ≥ |It(j)| ≥


∑
i≤j̄

Bt(i)

 . (7.1)

Given this we get:

|It(j) \ It(j + 1)| ≥


∑
i≤j̄

Bt(i)

−


∑
i≤j̄−1

Bt(i)

+ 2

 ≥ Bt(j̄)− 3,

as required.
We prove (7.1) by induction on t. For t = 0 we have d0 = 1, so we only need

to check the case j = 1. We have |I0(1)| = 2, and j̄ = k and
∑

i≤k B0(i) = 0.
Let t ≥ 1 and assume the claim is true for t − 1. Let j ∈ [1, k]. Suppose

first j ≤ qt. By the definition of the critical level, qt ≤ dt−1. Therefore j ≤ dt−1

and we may apply the induction hypothesis with t − 1 and j. Since j ≤ qt
|It(j)| = |It−1(j)| + 1. The conclusion then follows by induction if we can show
that

∑
i≤j̄ Bt(i) −

∑
i≤j̄ Bt−1(i) = 1. This holds because pt = q̄t and so j̄ ≥ pt

and therefore Bt is obtained from Bt−1 by adding a single item at position pt and
redistributing items among the first pt buckets, so that the difference in the two
sums is indeed 1.

Now assume j > qt. We hold t fixed and prove the equality by induction on j,
where we use the already proved case j = qt as the basis. Suppose that dt ≥ j > qt
and that the desired equality holds for (t, j − 1).

Define w(j) =
∑

i≤j̄ Bt(i). For dt ≥ j > qt we have j̄ < pt and the tail-bucketing
rule implies w(j) = w(j − 1)/6. Also, the rebuilding rule for It(j) implies |It(j)|
is between dIt(j − 1)/6e and dIt(j − 1)/6e + 1 (which is verified by case analysis
depending on |It(j − 1)| mod 6).

66

Thus:

|It(j)| ≤
⌈

1

6
|It(j − 1)|

⌉
+ 1

≤
⌈

1

6
(dw(j − 1)e+ 2)

⌉
+ 1

≤
⌈

1

6
w(j − 1)

⌉
+ 2

= dw(j)e+ 2,

where the second inequality uses the induction hypothesis and the third is a simple
arithmetic fact. This proves the first inequality of (7.1). Similarly for the second
inequality:

|It(j)| ≥
⌈

1

6
|It(j − 1)|

⌉
≥

⌈
1

6
(dw(j − 1)e)

⌉
≥

⌈
1

6
w(j − 1)

⌉
= dw(j)e .

Corollary 7.7.2. The cost of randomized labeling algorithm A with label space
[1,m] on y1, . . . , yn satisfies:

χA(y1, y2, . . . , yn) ≥ 1

40
(min costcheap[Tail1/6](p1, . . . , pn)− 10n),

where the minimum is over all placement sequences (p1, . . . , pn) into b4 log(m+ 1)c
buckets.

Proof. Consider the placement sequence p derived from the sequence of critical
levels as in Lemma 7.7.1. The total cost is

∑
tBt−1(pt) =

∑
tBt−1(q̄t), which by

Lemma 7.7.1 is bounded above by
∑

t |It−1(qt) \ It−1(1 + qt)|+ 3n. Split this latter
sum according to qt < dt−1 or qt = dt−1. The terms for which qt = dt−1 are each
at most 7 (since |It−1(dt−1)| ≤ 7) and so:∑

t

Bt−1(q̄t)− 10n ≤
∑

t:qt<dt−1

|It−1(qt) \ It−1(1 + qt)|.

Now apply Lemma 7.5.3.

67

7.8 Lower Bounds on Tail Bucketing

Armed with Corollary 7.7.2, it now suffices to prove a lower bound on the cheap
cost of simple tail bucketing when the number of items is n and the number of
buckets is b4 log(m+ 1)c.2

The first step is to bound the cost of (simple) tail bucketing by the cost of
(simple) prefix bucketing under the cost function costγ−disc.

Lemma 7.8.1. Let k ≥ 1 be an integer and p1, . . . , p` be the placement sequence
into k buckets. Then:

costcheap[Tailβ](p1, . . . , p`) ≥ (1− β) · costβ−disc(p1, . . . , p`)..

Proof. Refer to the item loaded in step j as item j. We can partition the cost of
step s as the sum of the contributions due to each of the items 1, . . . , s − 1. We
now show that for each item j and each step s > j, the contribution of item j to
the cost at step s using costcheap with the tail rearrangement rule is at least 1−β
times the contribution of item j to the cost at step s using costβ−disc.

Let h be an index in {j, j + 1, . . . , s− 1} such that ph is maximum. After step
s − 1, under the prefix rearrangement rule, j is located in bucket ph. If ps ≤ ph
then the contribution to costβ−disc by item j is βph−ps , otherwise the contribution
is 0.

Under tail rearrangement j is split among buckets 1, . . . , ph with (1− β)βph−i

of j in bucket i for 2 ≤ i ≤ ph and βph−1 located in bucket 1. If ps > ph then
under costcheap the contribution of item j to step s is 0. If 1 < ps ≤ ph then
under costcheap the contribution is (1− β)βph−ps and for ps = 1 the contribution
is βph−ps . This is at least 1− β times the contribution to costβ−disc under prefix
bucketing.

The next step is an easy reduction from costγ−disc to costb−block.

Lemma 7.8.2. Let γ ∈ (0, 1] and 1 ≤ b. Let p1, . . . , p` be a placement sequence.
Then:

costγ−disc(p1, . . . , p`) ≥ γbcostb−block(p1, . . . , p`).

Proof. Since in both games we are using the prefix rearrangement rule, the con-
figuration after each step in the two games is the same. Consider the contribution
of the tth step of the bucketing to each side. Items are loaded into bucket pt. Let

2Fun fact: Before deriving the lower bound we expended several CPU-days (on AMD Phenom
II X4 955 3.2GHz with 16GB of RAM) to calculate the optimal cost of tail-bucketing for upto
30 buckets and 500 items. This provided us with confidence that the cost grows in non-linear
fashion.

68

s be the least multiple of b with s ≥ pt and let r = s − pt. In b-block bucketing
we pay only for items that at step t − 1 were in buckets of the form pt + i where
0 ≤ i ≤ r. Since r ≤ b, in γ-discounted bucketing we pay at least γb for each of
these items.

Applying this lemma with b = 1 gives costγ−disc(p1, . . . , pn) ≥ costcheap(p1, . . . , pn).
This lower bound does not help us directly because it can be shown that for k =
log(n+1) buckets there is an (n, k)-placement sequence with costcheap(p1, . . . , pn) =
0. This follows from the following lemma, which we state in greater generality so
that we can use it later:

Lemma 7.8.3. For any `, k and for any load sequence n1, . . . , n` there is an (`, k)-
placement sequence r1, . . . , r` into k buckets satisfying:

costcheap(r1, . . . , r`|n1, . . . , n`) =
`−2k+1∑
j=1

nj(m+ 1− j),

where m = max(`− 2k + 1, 0).
In particular, if k ≥ log(`+ 1) then costcheap(r1, . . . , r`|n1, . . . , n`) = 0.

Proof. The sequence consists of loading all items into bucket 1 for the first m steps.
For all steps m+ j for j ≤ 2k−1 load new items in step j in bucket α(j)+1 where
α(j) is the largest power of 2 dividing j.

It is easy to prove by induction on j that after step m+ j the set of occupied
buckets are exactly those whose positions correspond to the 1’s in the binary
expansion of j. Furthermore, for all j ≥ 2, α(j) + 1 is empty at the end of step
j − 1. It follows that during the last 2k − 2 steps there is no cost incurred.

It remains to bound the total cost during the first m + 1 steps. Each item
loaded at step j ≤ m is charged m+ 1− j steps (at each step in j + 1, . . . ,m+ 1).
Thus the total charge is

∑m+1
j=1 nj(m+ 1− j).

As mentioned, this gives an upper bound of 0 if the number of buckets is at
least log(`+ 1). We now show that a small reduction in the number of buckets is
enough to give a good lower bound on costcheap.

Lemma 7.8.4. For any (`, k)-placement sequence p1, . . . , p`,

costcheap(p1, . . . , p`) ≥ (`+ 1)(log(`+ 1)− 2k).

Proof. We lower bound costcheap(p1, . . . , p`) by induction on `, where the base case
` = 0 is trivial. Let m1 < m2 < < mr be the indices such that pmi = k. Also
define m0 = 0 and mr+1 = `+ 1. For i ∈ [1, r + 1], the interval [mi−1 + 1,mi − 1]
is called phase i. Each phase consists only of placements to buckets k − 1 or

69

lower and (except possibly the last phase) is followed immediately by a placement
to bucket k. We define `i = mi − mi−1 − 1 to be the length of the phase. Let
γi = (`i + 1)/(`+ 1) so that

∑r+1
i=1 γi = 1.

Let us now analyze the cost of the sequence phase by phase. At the beginning of
phase i there are no items in any bucket below k. The phase itself is an (`i, k− 1)
bucketing so by induction has cost at least (`i + 1)(log(`i + 1) − 2(k − 1)) =
(` + 1)γi(2 + log(γi) + log(` + 1) − 2k). Except for i = r + 1, the placement pmi
immediately following the phase costs mi−1 = (` + 1)(

∑i−1
j=1 γj) since that is the

number of items in bucket k prior to that placement. Summing over phases and
rearranging gives:

costcheap(p1, . . . , p`) ≥ (`+ 1)

(
r∑
j=1

(r − j)γj + 2 +
r+1∑
i=1

γi log(γi)

)
+(`+ 1)(log(`+ 1)− 2k)

Note that the final term is the lower bound we are aiming for so it suffices to
show:

r∑
j=1

(r − j)γj + 2 ≥
r+1∑
i=1

γi log(1/γi).

Since
∑r+1

i=1 γi = 1 the lefthand side is at least
∑r+1

j=1(r − j + 2)γj. Observing

that
∑r+1

i=1 2−(r−j+2) ≤ 1, the desired inequality follows from:

Proposition 7.8.5. Let α1, . . . , αs be nonnegative reals summing to 1. Then for
all choices of x1, . . . , xs of nonnegative reals with sum at most 1, the function∑

i αi log(1/xi) is minimized when (x1, . . . , xs) = (α1, . . . , αs).

This is essentially equivalent to the well known fact that the KL-divergence of
two distributions is always nonnegative and is easily proved by first noting that
we may assume

∑
i xi = 1, and then using Lagrange multipliers, or induction on

s.

7.9 From costb−block to costcheap

So far we have shown that the cost of online labeling can be bounded below by
the cheap cost of tail-bucketing, which can be bounded below by the costb−block
for simple bucketing.

70

Below we will prove Lemma 7.9.3 which shows that costb−block can be bounded
below by costcheap with fewer buckets. In preparation, we begin by bounding
costexp from below by costcheap with fewer buckets.

Lemma 7.9.1. Let k ≥ 1 and b = 2k − 1. Let n1, . . . , n` be an arbitrary load
sequence. Then for any placement sequence p1, . . . , p` into b buckets there is a
placement sequence r1, . . . , r` into k buckets such that

costcheap(r1, . . . , r`|n1, . . . , n`) ≤ costexp(p1, . . . , p`|n1, . . . , n`).

Proof. If ` ≤ b then k ≥ log(`+1) so by Lemma 7.8.3 there is a placement sequence
r1, . . . , r` with zero cheap cost and the lemma follows. Hence, assume ` > b. We
begin with a lower bound on costexp(p1, . . . , p`|n1, . . . , n`). At step j, any item
inserted before j that is in bucket pj or higher incurs a charge of 1. Any previously
loaded item that is in a bucket less than pj incurs no charge, but is moved to bucket
pj. Thus, once an item is loaded, in every step it incurs a charge of 1 or increases
its bucket number. An item loaded at step j incurs no cost at step j and incurs a
cost of 1 in every step that it does not move, which means that it incurs a cost of
one in at least (`− j)− (b− 1) steps. Summing over the first `− b items we get.

costexp(p1, . . . , p`|n1, . . . , n`) ≥
`−b∑
j=1

nj(`− j − b+ 1).

Now, setting b = 2k − 1, Lemma 7.8.3 completes the proof of the lemma.

For a step i let ci(p1, . . . , p`|n1, . . . , n`) be the cost of the placement into pi at
step i. For I ⊆ [1, `], let

cI(p1, . . . , p`|n1, . . . , n`) =
∑
i∈I

ci(p1, . . . , p`|n1, . . . , n`). (7.2)

Lemma 7.9.2. Let p1, . . . , p` be a placement sequence with b buckets. Let θ ∈ [1, b]
and let I = {i1 < · · · < ih} be the indices in [1, `] such that pij > θ. Let s1, . . . , sh
be the placement sequence into b−θ buckets given by sj = pij−θ and let n1, . . . , nh
be given by n1 = i1 and for j > 1, nj = ij − ij−1. Then for cost function c ∈
{costcheap, costexp},

cI(p1, . . . , p`) = c(s1, . . . , sh|n1, . . . , nh).

Proof. It suffices to show that for each j ∈ [1, h], cij(p1, . . . , p`) = cj(s1, . . . , sh|n1, . . . , nh).
LetB1, . . . , B` be the bucketing sequence associated to (p1, . . . , p`), and let B̃1, . . . , B̃h

be the bucketing sequence associated to (s1, . . . , sh|n1, . . . , nh).

71

We claim that for each j ∈ [1, h] the configuration Bij restricted to [θ + 1, b]

is identical to the configuration B̃j restricted to [1, b− θ]. This is easily shown by
induction on j. The base case j = 0 is trivial. Assume j > 0. The result holds for
j − 1 so Bij−1

restricted to [θ + 1, b] is identical to Bj−1 restricted to [1, b− θ].
For the sequence s1, . . . , sh, at step j, all buckets above sj are unchanged, all

buckets below sj are emptied, and sj increases by the number of items that were
in buckets below sj, together with the load of nj.

Now consider the change in the configuration B from Bij−1
to Bij . For each

s ∈ ij−1+1 to ij−1, ps ≤ θ, which implies thatB restricted to [θ+1, b] is unchanged.
Next consider the placement pji at step ji. All buckets above pji = sj + θ are
unchanged and all buckets below pj are emptied, and bucket pj gets all of the
items that were in buckets [θ+ 1, pij − 1] after step ij−1 together with all of the nj
new items that arrived since ij−1 of the buckets in B. This exactly matches the
change in bucket sj at step j in the other bucketing, as required to establish the
claim.

By the claim, the cost of step ij for p1, . . . , p` is the same as the cost of step j
for s1, . . . , sh|n1, . . . , nh as required to prove the lemma.

Next we come to a crucial reduction which lower bounds costb−block in terms
of costcheap with a fewer number of buckets.

Lemma 7.9.3. Let k ≥ 1, m ≥ 1 and b = 2k − 1. Let p1, . . . , p` be a placement
sequence into bm buckets. There exists a placement sequence s1, . . . , s` for km
buckets such that

costcheap(s1, . . . , s`) ≤ costb−block(p1, . . . , p`).

Proof. Fix p1, . . . , p`. We first describe the construction of the sequence s1, . . . , s`
and then prove the properties.

To specify the sequence s1, . . . , s` we will define a partition of [1, `] into (gener-

ally non-consecutive) subsequences, and for each set ĥ in the partition separately

specify si for i ∈ ĥ.
The definition of the partition takes a few steps. Define the level of a bucket

w for block size b to be the largest λ such that λb < w, and the remainder of w to
be w− λb. For i ∈ [1, n], define λi to be the level of pi and ri to be the remainder
of pi. By the hypotheses of the lemma each λi ∈ [0,m− 1] and each remainder is
in [1, . . . , b]. We also define λ0 = λ`+1 =∞.

A chain of level j and order v is a sequence h of indices h0 < h1 < · · · < hv <
hv+1 (with possibly h0 = 0 or hv+1 = `+ 1) satisfying the following properties:

• λh0 > j and λhv+1 > j,

72

• λh1 = · · · = λhv = j,

• For any index i belonging to [h0,hv+1] \ {h0,h1, . . . ,hv+1}, λi < j.

The indices h0,hv+1 are the endpoints of h, and the other indices are the
interior indices. We write ĥ = {h1,h2, . . . ,hv} for the interior of h. Thus the

order of h equals to |ĥ|. A chain of order 0 is trivial, others are non-trivial.
Every chain of level j can be obtained in the following way: consider the sequence
0 = g0 < g1 < · · · < gw−1 < gw = `+ 1 consisting of all indices at level higher than
j. Then between each consecutive pair gi and gi+1 from the sequence there is a
unique chain of level j. The interiors of these chains partition the set of indices at
level j. The collection of all nontrivial chains is denoted H, and the set of interiors
of these chains partitions [1, `].

We write λ(h) for the level of h and v(h) for the order of h.

For a chain h as above, we define its difference sequence to be the sequence
∆h

1 , . . . ,∆
h
v(h) given by ∆h

i = hi−hi−1. (We could also define ∆h
v(h)+1 but we won’t

need it.) The sum of the difference sequence is just hv(h) − h0. Finally we define
the remainder sequence of h to be the subsequence rh1 , . . . , rhv(h)

of the remainder
sequence r1, . . . , rv(h) corresponding to the interior indices of h.

At last we are ready to define si. Fix h ∈ H; we define si for i ∈ ĥ. Now
view the remainder sequence rh1 , . . . , rhv of h as a placement for the load sequence
∆h

1 , . . . ,∆
h
v(h). All of these placements are in the range [1, 2k − 1] so by Lemma

7.9.1, there is a placement u1, . . . , uv(h) into buckets in the range [1, k] such that:

costcheap(u1, . . . , uv(h)|∆h
1 , . . . ,∆

h
v(h)) ≤ costexp(r1, . . . , rv(h)|∆h

1 , . . . ,∆
h
v(h)).

Now for each i ∈ [1, v(h)] let shi = λ(h)k + ui. This defines the values si for

i ∈ ĥ, and by doing this for all h ∈ H we get the sequence s1, . . . , sn.

Since λ(h) ∈ [0,m− 1] and ui ∈ [1, k] we have that all s values are in [1, km].
When we refer to the level of an si we mean its level with respect to block size k.
Observe that the sequence λi of levels (with respect to block size b) corresponding
to the placement sequence p is the same as the sequence of levels (with respect to
block size k) corresponding to placements in s.

To prove the inequality of the lemma, we need a bit more notation. Write ph

for the consecutive subsequence of p of length hv − h0 starting with ph0+1. Thus

phi = ph0+i. Define sh analogously. Also let ĥRel = {h1−h0,h2−h0, . . . ,hv(h)−h0}.
Thus ĥRel is the set of indices of ph corresponding to ĥ.

The inequality of the lemma is obtained from the following chain (where we
use the notation from (7.2)) of relations:

73

costb−block(p1, . . . , p`)
(A1)
=

∑
h∈H

costĥb−block(p1, . . . , p`)

(A2)
=

∑
h∈H

costĥRel
exp (ph1 , . . . , p

h
hv(h)−h0

)

(A3)
=

∑
h∈H

costexp(rh1 , . . . , rhv(h)
|∆h

1 , . . . ,∆
h
v(h))

(A4)

≥
∑
h∈H

costcheap(uh1 , . . . , uhv(h)
|∆h

1 , . . . ,∆
h
v(h))

(A5)
=

∑
h∈H

costĥRel
cheap(sh1 , . . . , s

h
hv(h)−h0

)

(A6)
=

∑
h∈H

costĥcheap(s1, . . . , s`)

(A7)
= costcheap(s1, . . . , s`).

We now justify each of these steps. We work from both ends to the middle.
Equalities (A1) and (A7) follow from the fact that H is a partition of [1, `]. For
all of the other relations, we fix an h ∈ H and show it holds term by term.
For (A2) observe first that after step h0, items stored during steps [1,h0] are in
buckets higher than level j and so contribute nothing to the costb−block during
steps [h0 + 1,hv(h)] so in accounting for the cost of steps of ĥ we can omit all
placements prior to h0. During [h0 + 1,hv(h)] there are no placements above block
j so costexp coincides with costb−block. This proves (A2) and a similar argument
gives (A6). For (A3), we apply Lemma 7.9.2 with θ = jb, and for (A5) we apply
the same lemma with θ = jk. Finally Lemma 7.9.1 implies (A4).

Lemma 7.9.4. Let c ≥ 1 be an arbitrary constant. For any large enough in-
tegers n,m satisfying m < (n + 1)c and any placement sequence p1, . . . , pn into
b4 log(m+ 1)c buckets the following is true:

costcheap[Tail1/6](p1, . . . , pn) ≥ 5

12

(
1

6

)512c2

(n+ 1) log(n+ 1).

Now Lemma 7.5.1 follows from this lemma and Corollary 7.7.2.
Proof of Lemma 7.9.4. Choose b ∈ [256c2, 512c2] such that b = 2k − 1 for some
integer k. By Lemmas 7.8.1 and 7.8.2 we have:

costcheap[Tail1/6](p1, . . . , pn) ≥ (5/6) · cost1/6−disc(p1, . . . , pn)

≥ (5/6)(1/6)b · costb−block(p1, . . . , pn).

74

Set k1 = b4 log(m+ 1)c and k2 = k · dk1/be. By Lemma 7.9.3, for any (n, k1)-
placement sequence p1, . . . , pn there is a (n, k2)-placement sequence s1, . . . sn such
that:

(5/6)(1/6)b · costb−block(p1, . . . , pn) ≥ (5/6)(1/6)b · costcheap(s1, . . . , sn).

We want to apply Lemma 7.8.4 to this final expression. Notice,

k2 = log(b+ 1) ·
⌈
b4 log(m+ 1)c

b

⌉
≤ log(b+ 1) +

log(b+ 1)

b
· 4c · log(n+ 1)

≤ log(n+ 1)

4

provided that n is large enough and log(b+1)/b < 1/16c. Indeed, since log(x+1)/x
is a decreasing function, log(b + 1)/b ≤ log(256c2 + 1)/256c2 ≤ (11/16)(1/16c)
as can be easily verified. Lemma 7.8.4 applied on s1, . . . sn implies the lower
bound.

75

76

8. Online Labeling Problem with
Small Label Space

8.1 Introduction

In this chapter we prove an Ω
(
n · log2(n)

2+log(m)−log(n)

)
lower bound on the number of

moves for inserting n items. This lower bound is valid for m between cn (c > 1)
and n1+ε (ε < 1

16
) for any deterministic online labeling algorithm, matching the

known upper bound up to constant factors.
This chapter is an extension of [10] obtained together with Martin Babka and

Vladimı́r Čunát. It is based on the original simpler proof of [10]. In Chapter 9 we
provide [10] which was the first lower bound for general algorithms in the linear
space regime. Previously the only known general lower bound was by Dietz et al.
[13] who proved an Ω(n · log(n)) lower bound for polynomial size arrays. Thus our
bound is a significant improvement. For the case of m = O(n), Dietz et al. [12, 21]
proved an Ω(n log2(n)) lower bound for the restricted case of so-called smooth
algorithms, however, this didn’t give tight bound beyond the linear case.

This chapter uses ideas similar to Chapter 9. Chapter 9 provides lower bounds
for the linear case and arrays of size close to n. It also gives lower bounds for the
case of limited item universe. It would be possible to extend proofs of Chapter 9
to handle also the case considered in this chapter. However, the main ideas of the
proof would disappear. Thus we present the lower bound proof for the superlinear
arrays independently. We hope that this presentation makes the proof easier to
follow and also helps in understanding of Chapter 9.

Recall we use the notation from section 1.2 and section 5.2.

8.2 Hard Sequence Construction

In this section we sketch an adversary which given an algorithm A, the number
of inserted items n and the size of the array m (such that they satisfy some
requirements we point out later) it produces an input sequence y1, y2, . . . , yn that
is costly for the algorithm A.

As a guide to picking each successive item, the adversary maintains a sequence
(chain) of nested intervals of already inserted items similar to previous chapters.
There are however differences to chains in Chapters 6 and 7. While in these
chapters we build chain from the very first step, here we start after roughly n/2
items were inserted. The reason for this is that then we can fix the depth of the
chain to be the same during the argument. The first n/2 items are therefore chosen

77

almost arbitrarily, we only have to ensure that between any two inserted items,
there remain enough unused items in the universe.

The other difference is that for this proof the density control is crucial. Ideally,
we should build the chain so that the density of successive intervals of the chain
is nondecreasing (which is not necessary in Chapters 6 and 7). This is easy to
achieve if we can choose each successive subinterval arbitrarily. However we have
to choose the subinterval so that it has significant buffers of items surrounding
it. This allows us to charge the algorithm when it moves the boundaries of some
interval of the chain (recall we may assume that algorithm is lazy). Unfortunately
when the buffers are introduced it is infeasible to ensure increasing density. Thus
we have to relax this condition so that the density does not decrease too much.
Still the density decrease may be too large. Therefore we distinguish good and
bad intervals of the chain (levels of the chain). We say that an interval is good,
if it contains a large subinterval surrounded with large enough buffers and the
density of the subinterval is close to the density of the whole interval. The interval
is bad otherwise. We show that in the bad case we can find large subinterval
whose density is significantly higher then the density of the whole interval. By
very careful choice of “almost the same” and “significantly higher” we can build a
chain which is suitable for a charging scheme which we describe later. In particular
we will be able to limit the number of bad intervals in the chain after inserting
each item.

We will need to rebuild the chain after each insert. The basic idea is similar
to previous chapters. We first determine so called critical level and then starting
from this level we rebuild the chain while all intervals above the critical level are
preserved (i.e. they are unchanged, except for the newly inserted item which is
added to them). The choice of the critical level is however slightly tricky. Before
a good interval is rebuilt we need to ensure that enough items were moved. This
is easy to ascertain for intervals whose borders were crossed by the lazy algorithm
(i.e. their leftmost or rightmost item was relabeled). However if the borders were
not crossed, a good interval could technically become bad by redistributing the
items within the interval. Here we crucially use an additional property of good
intervals. If the interval does not contain a large enough interval with much higher
density, then all subintervals are almost as dense as the whole interval. Using this
we can show, that unless a significant number of items which are in buffers of the
interval are moved, a subinterval with almost the same density can be found.

8.3 Charging Scheme

Charging scheme defines a way we assign the cost of the algorithm among the
inserted items. This scheme is used to lower bound the cost of the algorithm.

78

First we show that the cost of the algorithm at each step can be lower bound
by the number of items in buffers of good intervals which were rebuilt in that step.
Notice that we completely ignore the moves of items which occur in bad intervals
of the chain, still the remaining cost will be large enough.

Now we focus on each interval that was rebuilt separately. We distribute the
cost which equals to the size of buffers of each interval among the last half of items
inserted to this interval since the interval was rebuilt the last time. We say that
these items were charged at this step. The reason for not charging all of the items
will be explained later. This is correct as from construction of the adversary it will
be obvious that buffers of different intervals are disjoint. Notice that items may
be charged on multiple levels in a single step.

Next we lower bound the total cost assigned to certain items. We choose those
items which were charged enough times (i.e., at least on constant factor of all
levels). First we estimate the charge assigned to the item at certain level to be
(roughly) the fraction of the density of the interval on that level and the density of
the interval on the next level. We consider the densities with respect to the step
when the item was inserted. This approximates the size of the interval buffers
divided by the number of items inserted to the level since the last rebuilt. This is
also the reason why we only consider the last half of the items inserted since last
rebuilt, because for them we can estimate their charge well.

However the reason we insist on estimating charge using the densities at one
particular step is that the way we build interval chain puts some limits on densities
of intervals in it at each step (but not between the steps). In particular, the
densities of intervals in which one particular item was charged cannot be growing
that much. We use this to show that the number of newly inserted items among all
the intervals in which the item was charged is limited. Thus the number of items
among which the cost is distributed is relatively small and we can find sufficient
lower bound on cost charged to the items.

Finally we show, that the number of items which are charged on sufficient
number of levels is at least constant fraction of all items. This follows from the
fact that the number of good levels at each step is a constant fraction of depth of
the chain.

8.4 The Main Theorem

In this section, we state the main result of this chapter.

Theorem 8.4.1. There are positive constants C0, and C1 so that the following
holds. Let A be a deterministic algorithm with parameters (n,m, r), such that

C0 ≤ n ≤ m ≤ 1
4
n1+1/16 and r ≥ 2n − 1. Then χA (n,m, r) ≥ C1 · n log2(n)

2+logm−logn
.

79

This theorem will be an immediate consequence of Lemma 8.5.2 in the next
section.

8.5 Adversary Construction

In this section we specify the adversary Adversary(A, n,m) which given an online
labeling algorithm A, a length n, and label space size m, constructs an item se-
quence y1, y2, . . . , yn from the universe U = {1, . . . , 2n−1}. We state Lemma 8.5.2
which implies Theorem 8.4.1.

In what follows, ft is the allocation of Yt by the algorithm A. As was explained
in Section 5.3 the central problem is to construct the sequence of items y1, . . . , yn
which cause the algorithm to perform the desired number of relabellings. To do
so we want to track the dense segments of the array. Therefore the adversary
maintains a sequence of nested intervals of inserted items Yt,

1

It(depth) ⊆ · · · ⊆ It(2) ⊆ It(1) = Yt ∪ {minU ,maxU},

updating them after each time step t.

Our proofs use the following assumptions.

Assumption 8.5.1.

(1) The number of inserted items n is at least 512

(2) The size of the array m is at most 1
4
n1+1/16

Consider an arbitrary interval I of Yt. The density of interval I at step t, ρt(I),

is defined as ρt(I) = |I|
spant(I)+1

. Notice that ρt(I) ≤ 1. Let densifyt(I) be the

subinterval T of I such that

1. d I
16
e ≤ |T | ≤ d I

8
e

2. ρt(T) is maximal among all possible T ’s.

If there are more such subintervals T we choose the one with the minimal
smallest item. Hence, densifyt(I) is the densest subinterval T of I that contains
the appropriate number of items.

Figure 8.1 presents the pseudocode of the Adversary(A, n,m).

1Recall, we use subscript to denote step and we use (·) notation to denote a particular coor-
dinate of such a vector or sequence at that step.

80

Adversary(A, n,m)

• depth←− blog16
n
2
c , δ ←−

(
4·m
n

) 2
depth , t0 ←−

⌊
n
2

⌋
• It0−1(1)←− {yt = 2n−t; t ∈ {1, . . . , t0 − 1}} ∪ {minU ,maxU}
• For t = t0, . . . , n do

– if t = t0 then yt ←− 2n−t0

– else yt ←− min(It−1(depth)) + 2n−t

– Run A on (y1, y2, . . . , yt) to set ft and Relt.

{Choose Critical Level}
– if t 6= t0

∗ qt ←− maximal i such that min(It−1(i)),max(It−1(i)) /∈ Relt

∗ If badt−1(qt) is true or ((Lt−1(qt) ∪Rt−1(qt)) ∩Relt 6= ∅ then

· qt ←− qt − 1

– else qt ←− 0

{Preservation Rule}
– for i = 1, . . . , qt do:

∗ It(i)←− It−1(i) ∪ {yt}
∗ Lt(i)←− Lt−1(i), Rt(i)←− Rt−1(i), badt(i)←− badt−1(i)

{Rebuilding Rule}
– It(qt + 1)←− It−1(qt + 1) ∪Relt
– for i = qt + 1, . . . ,depth− 1 do:

∗ Lt(i)←−
⌈
It−1(i)

16

⌉
smallest items of It−1(i)

∗ Rt(i)←−
⌈
It−1(i)

16

⌉
greatest items of It−1(i)

∗ if ρt(densifyt(It(i))) > δρt(It(i)) then

· badt(i)←− true

· It(i+ 1)←− densifyt(It(i))

∗ else

· badt(i)←− false

· It(i+ 1)←− It(i)\
{⌈

It−1(i)
8

⌉
smallest and greatest items from It(i)

}
– Lt(depth)←− Rt(depth)←− ∅
– badt(depth)←− true

• Output: y1, y2, . . . , yn.

Figure 8.1: Pseudocode for the Adversary

81

Let us explain some details of the adversary. As already mentioned the adver-
sary generates the sequence of items y1, y2, . . . , yn using the interval chain at each
step to determine the next item.

The first t0 =
⌊
n
2

⌋
items are chosen almost arbitrarily since these items are only

needed for the initial construction of the chain. We only have to ensure that the
minimum difference between two inserted items is at least 2n−t0 . This is necessary
since a crucial assumption for the adversary is that y1, . . . , yn are distinct. It is
easy to see by induction on t that the items belonging to Yt ∪ {minU ,maxU} are
multiples of 2n−t, and it follows that yt is strictly between the smallest and second
smallest elements of It−1(depth).

Now we need to specify how we determine the chain at step t ≥ t0.

We build the intervals for the chain at step t in order of increasing level (i.e.,
decreasing size). Intervals are either preserved (carried over from the previous
chain, with the addition of yt) or rebuilt. To specify which intervals are preserved,
we define a critical level qt for step t, which is at least 0 and at most depth
which is the length of the chain at each step t, t ≥ t0. We’ll explain the choice
of qt below. At step t, the intervals It(i) for i ≤ qt are preserved, which means
that It(i) is obtained simply by adding yt to It−1(i), and the rest are rebuilt. The
rule for rebuilding the chain for i > qt is defined by induction on i as follows:
If subinterval densifyt(It(i− 1)) of It(i− 1) has density at least δ times greater
than the density of It(i− 1) we say that It(i− 1) is bad and we set It(i) to be a
densifyt(It(i− 1)). Otherwise, we say that It(i− 1) is good and we choose middle
half of items of It(i− 1) to be It(i). If It(i− 1) is good we also define Lt(i− 1) and
Rt(i− 1) which play the role of buffers and are unchanged until i-th level is rebuilt
again. On the other hand, the first line of Rebuilding Rule allows the subinterval
It(i) on i-th level to absorb additional items of It(i− 1) during next steps even
if It(i− 1) is not rebuilt (i.e., items from subinterval between Lt(i− 1) and It(i)
and between It(i) and Rt(i− 1)). In particular it absorbs relocated elements. In
this way, It(i) may absorb number of items comparable to the size of Lt(i− 1) and
Rt(i− 1). Once it absorbs enough elements, we rebuild It(i).

It remains to explain how the critical level qt is selected. First we find the
greatest level ` such that the smallest and the greatest items of It(`) were not
moved. If It(`) is good and its buffers were not affected we set qt = `. Notice, that
this is the only case when the first line of Rebuilding Rule may have non-trivial
impact since Relt does not have to be a subset of It(`+ 1) ∪ {yt}.

If It(`) is good and its buffers were affected we set qt = `− 1 since we have to
rebuild It(`). The reason is that enough work has been done and we cannot ensure
the requested minimal density of It(`+ 1) after the rebuild. Similarly, if It(`) is
bad we set qt = `−1 since its internal structure changed and it may become good.

Now we can state the main lemma of the section which together with Lem-

82

ma 5.4.2 (we can consider only lazy algorithms) implies Theorem 8.4.1 immedi-
ately.

Lemma 8.5.2. Under Assumptions 8.5.1 let A be a lazy online labeling algorithm
with parameters (n,m). Let y1, y2, . . . , yn be the output of Adversary(A, n,m)
(Figure 8.1). Then it holds that

χA ((y1, y2, . . . , yn),m) ≥ n

32
·
(blog16(n

2
)c2

252 · (logm− log n+ 2)
−
blog16(n

2
)c

25

)
.

8.6 Interval Chain Properties

In this section we prove a few useful claims about the chain properties. By
birtht(i) we denote t′ greatest such t′ ≤ t and qt′ < i. Similarly we define deatht(i)
as t′ where t′ > t is the smallest such that qt′ < i or n if there is not such t′.

We start with claim which limits depth and δ.

Claim 8.6.1. Under Assumptions 8.5.1, we have:

(1) depth ≥ 2.

(2) 1 ≤ δ < 2.

Proof. Proof of Part (1) is immediate implication of Assumption 8.5.1.1. Thus we
focus on Part (2).

Recall that

(i) δ =
(

4m
n

) 2
depth

(ii) 1
2

log16(n) < depth (since depth ≥ 2)

(iii) m ≤ 1
4
· n1+1/16 (Assumption 8.5.1.2)

Thus we have

log(δ) = 2 ·
log 4m

n

depth
<

4 · log 4m
n

log16 n
=

16 · log 4m
n

log n
≤ 16 · log n

1
16

log n
= 1,

and obviously log(δ) =
2·log 4m

n

depth
≥ 0 which finishes the proof.

In the next claim we show, that not only all intervals in the chain are nonempty
at each time t ≥ t0, but also we find lower bounds on their size at each level.
We only need this lower bound for the very last interval of the chain, however
Claim 8.6.2 provides us better understanding of how the Adversary works.

83

Claim 8.6.2. Under Assumptions 8.5.1 for each i ∈ {1, . . . ,depth}, t ∈ {t0, . . . , n}
it holds that |It(i)| ≥ 16depth−i+1.

Proof. First we prove that for t0. From construction, it follows that qt0 = 1 and
|It0(1)| = bn/2c + 2 ≥ n

2
. Since depth = blog16

n
2
c, the claim is clearly true for

It0(1).
Now we proceed by induction on i ∈ {2, . . . ,depth}, assuming that claim

is true for It0(i− 1). From the Rebuilding Rule it follows that It0(i) may be
constructed in two ways.

First assume that badt0(i− 1) is true. Then |It0(i)| ≥ |It0(i− 1)|/16 thus the
claim is true.

If badt0(i− 1) is false then notice that

|It0(i)| ≥ |It0(i− 1)| − 2

⌈
|It0(i− 1)|

8

⌉
≥ |It0(i− 1)|/16

assuming that |It0(i− 1)| ≥ 16. But it is obviously true for each It0(i) if i <
depth.

Now we proceed by induction on t, assuming that claim is true for each It−1(i).
We consider two cases, first let us assume that i ≤ qt. In such case we have
It(i) = It−1(i) ∪ yt and thus the claim is obviously true.

For i > qt we proceed as in the case of t0, the only difference is that we start
from level qt and not from level 1. The proof follows.

Claim 8.6.3. Under Assumptions 8.5.1

(i) for any t ∈ {t0 + 1, . . . , n} and i ∈ {1, . . . , qt}, it holds that

Relt ⊆ It(i) \ {min(It(i)),max(It(i))}

(ii) for any t ∈ {t0 + 1, . . . , n} such that qt < depth and badt−1(qt) is true it
holds that

Relt ⊆ It(qt + 1) \ {min(It(qt + 1)),max(It(qt + 1))}.

Proof. We start with Part (i) which is simpler and then we show how to use the
same approach for Part (ii). If we prove Part (i) for i = qt we are done since for
i < qt it holds that It(qt) ⊆ It(i).

From the adversary construction we can infer that yt > min(It−1(depth)). To
prove yt < max(It−1(depth)) we used |It−1(depth)| ≥ 2 (Claim 8.6.2). Since
It−1(depth) ⊆ It−1(qt) we also obtain yt > min(It−1(qt)) and yt < max(It−1(qt)).

Finally, we have to combine the fact from the previous paragraph, the fact that
A is lazy and the fact that min(It−1(qt)) /∈ Relt and max(It−1(qt)) /∈ Relt and
It(qt) = It−1(qt) ∪ yt which proves Part (i).

84

To prove Part (ii) we have to use the fact implied by the Critical Level Choice
that if badt(qt) is true then min(It−1(qt + 1)) /∈ Relt and max(It−1(qt + 1)) /∈
Relt. Otherwise we would choose qt − 1 to be qt. However using the very
same arguments as for Part (i) we again obtain yt > min(It−1(qt + 1)) and yt <
max(It−1(qt + 1)).

Since It(qt + 1) = It−1(qt + 1) ∪Relt proof of Part (ii) follows.

Claim 8.6.4. Under Assumptions 8.5.1, for each i ∈ {1, . . . ,depth− 1}, t ∈
{t0 + 1, . . . , n}, if tb = birtht(i), then

Itb(i+ 1) ∪ {ytb+1, . . . , yt} ∪
t⋃

t′=tb+1

Relt′ = It(i+ 1), and

Itb(i) ∪ {ytb+1, . . . , yt} = It(i).

Proof. We proceed by induction on t. For t = tb both equations are true trivially.
We start with the first equation. For t > tb recall that qt ≥ i thus two cases may
occur:

1. i+ 1 ≤ qt, then Adversary definition implies It(i+ 1) = yt ∪ It−1(i+ 1) and
Relt ⊆ It(i+ 1) (Claim 8.6.3)

2. i + 1 = qt + 1, then Rebuilding Rule definition implies It(i+ 1) = Relt ∪
It−1(i+ 1)

Both cases implies It(i+ 1) = Relt ∪ yt ∪ It−1(i+ 1) which implies the wanted
equation immediately.

Second equation is even simpler as for t > tb we have qt ≥ i.

Claim 8.6.5. Under Assumptions 8.5.1 for each i ∈ {1, . . . ,depth}, t ∈ {t0, . . . , n},
if tb = birtht(i), then it holds that |It(i+1)|

|It(i)| ≥
|Itb (i+1)|
|Itb (i)| .

Proof. From Claim 8.6.4 we have |It(i+ 1)| ≥ |Itb(i+ 1)| + t − tb and |It(i)| =
|Itb(i)|+ t− tb. Thus we can proceed

|It(i+ 1)|
|It(i)|

≥ |Itb(i+ 1)|+ t− tb
|Itb(i)|+ t− tb

≥ |Itb(i+ 1)|
|Itb(i)|

,

where the last inequality follows from |Itb(i+ 1)| < |Itb(i)| since Itb(i+ 1) ⊂ Itb(i).

Next two claims shows that “badness” and the span of the interval is preserved
if the interval is not rebuilt. Preservation Rule immediately implies the following
claim.

85

Claim 8.6.6. For each i ∈ {1, . . . ,depth}, t ∈ {t0, . . . , n}, if tb = birtht(i) then
badtb(i) = badt(i).

Claim 8.6.7. Under Assumptions 8.5.1 for each i ∈ {1, . . . ,depth− 1}, t ∈
{t0, . . . , n}, if tb = birtht(i) then:

(i) spantb(Itb(i)) = spant(It(i))

(ii) if additionally badt(i) is true then spantb(Itb(i+ 1)) = spant(It(i+ 1)).

Proof. We start with Part (i). We proceed by induction on t. For t = tb the
equation is trivial. Now assume that equations are true for t− 1. Since i ≤ qt we
use Claim 8.6.3 Part (i) and we obtain spant−1(It−1(i)) = spant(It(i)). Using the
induction hypothesis the claim follows.

For Part (ii) we proceed similarly using Claim 8.6.3 Part (ii) together with
Claim 8.6.6.

Lemma 8.6.8. Under Assumptions 8.5.1 for each i ∈ {1, . . . ,depth}, t ∈ {t0, . . . , n},
if badt(i) is true then ρt(It(i)) < ρt(It(i+ 1))/δ.

Proof. Let tb = birtht(i). Now we distinguish two situations. If t = tb then the
claim follows immediately from Rebuilding Rule.

Otherwise we proceed with the following chain of inequalities.

1

δ
>

ρtb(Itb(i))

ρtb(Itb(i+ 1))
=
|Itb(i)| · (spantb(Itb(i+ 1)) + 1)

|Itb(i+ 1)| · (spantb(Itb(i)) + 1)

(Claim 8.6.7)
=

|Itb(i)| · (spant(It(i+ 1)) + 1)

|Itb(i+ 1)| · (spant(It(i)) + 1)
(Claim 8.6.5)

≥ |It(i)| · (spant(It(i+ 1)) + 1)

|It(i+ 1)| · (spant(It(i)) + 1)
=

ρt(It(i))

ρt(It(i+ 1))
.

The lemma follows immediately.

To prove the similar lower bound in case badt(i) is false we start with the
following lemma which limits the density of the middle part of the segment given
the upper bounds on the remaining parts.

Lemma 8.6.9. Let f be an allocation of items from a set Y by an algorithm A.
Let density ρ and span be measured with respect to this allocation. Let I be an
interval of Y . Let L,M,R partition I into subintervals of I, so that all elements
in L are smaller than in M and all elements in M are smaller than in R. Let c
be arbitrary such that c > 1 and ρ(L), ρ(R) < c · ρ(I). If |M | ≥ |L|+ |R| then

ρ(M) ≥ ρ(I)

c
.

86

Proof. Let ` = span(I) − span(L) − span(R) − 2 and d = |M |
`+1

. We only prove

that d ≥ ρ(I)
c

since ρ(M) ≥ d which follows trivially from the fact ` ≥ span(M).
Using this notation we obtain the following chain of equalities and inequalities.

d =
|M |
`+ 1

=
|I| − |R| − |L|

`+ 1

=
|I| − ρ(R)(spant(R) + 1)− ρ(L)(spant(L) + 1)

`+ 1

>
|I| − c · ρ(I)(span(R) + span(L) + 2)

`+ 1

=
|I| − c · ρ(I)(span(I)− `)

`+ 1

=
(1− c)|I|
`+ 1

+ cρ(I) ≥ 2(1− c) · d + c · ρ(I),

where the last inequality follows from the fact that c > 1 and 2|M | ≥ |It(i)|. Now
we can deduce the following

d− 2(1− c)d ≥ c · ρ(I)

d ≥ c · ρ(I)

2c− 1
≥ ρ(I)

c
.

Last inequality follows from the fact that c2 − 2c + 1 ≥ 0 which implies c
2c−1
≥ 1

c

and thus finishes the proof.

Lemma 8.6.10. Under Assumptions 8.5.1, for each i ∈ {1, . . . ,depth− 1}, t ∈
{t0, . . . , n} if badt(i) is false then ρt(It(i))

δ
≤ ρt(It(i+ 1)).

Proof. Let tb = birtht(i), L
′ = {y ∈ It(i); y < min(It(i+ 1))} and R′ = {y ∈

It(i); y > max(It(i+ 1))}. From Claim 8.6.4 it follows that for each y ∈ It(i) \
It(i+ 1), ftb(y) = ft(y). Thus from the construction of the adversary and since
badt(i) is false we can derive that ρt(L

′) ≤ δ ·ρtb(Itb(i)) and ρt(R
′) ≤ δ ·ρtb(Itb(i)).

But since ρtb(Itb(i)) ≤ ρt(It(i)) (Claim 8.6.4, Claim 8.6.7), the lemma follows from
Lemma 8.6.9.

Now we can prove one of the most important lemmas of the section. We show
that the number of good levels is at least a constant fraction of depth.

Lemma 8.6.11. Under Assumptions 8.5.1, for each t ∈ {t0, . . . , n} if we define
S as follows:

S = {i ∈ {1, . . . ,depth} , such that badt(i) is false},

then |S| ≥
⌈

1
4
· depth

⌉
.

87

Proof. For the sake of contradiction, let us assume that |S| ≤
⌈

1
4
· depth

⌉
− 1.

Recall that ρt(It(i)) > δ · ρt(It(i− 1)) (Lemma 8.6.8) if badt(i− 1) is true and

ρt(It(i)) >
ρt(It(i−1))

δ
otherwise. In addition, t ≥ t0 ensures that ρt(It(1)) = |Yt|+2

m+2
≥

n
2m

(i.e the density of all items inserted so far). Since It(depth) is bad by definition
of the Adversary and depth ≥ 2 we can estimate the ρt(It(depth)) as follows:

ρt(It(depth)) ≥ ρt(It(1)) · δ
3
4
depth− 1

4
depth−1

=
n

2m
·
(

4m

n

) 2
depth

·(2
4
depth−1)

=
n

2m
· 4m

n
· 1

δ

(Claim 8.6.1.2)
> 1.

Thus we obtain a contradiction since ρt(It(depth)) is at most 1.

The last property of the chain we need to showd is that the span of a successive
subinterval of an interval is at most constant fraction of the span of the interval.

Claim 8.6.12. Under Assumptions 8.5.1, for each i ∈ {1, . . . ,depth− 1}, t ∈
{t0, . . . , n} it holds

spant(It(i+ 1)) + 1 ≤ 15

16
· (spant(It(i)) + 1).

Proof. Let tb = birtht(i). We distinguish two cases:
If badt(i) is true then spant(It(i+ 1)) = spantb(Itb(i+ 1)) (Claim 8.6.7).

However, for t = tb the claim follows from construction since |Itb(i+ 1)| ≤ 1
2
|Itb(i)|

and ρtb(Itb(i+ 1)) ≥ ρtb(Itb(i)).
If badt(i) is false we focus on the length of Lt(i). Construction of Adversary

implies that Ltb(i) = Lt(i) and since none of the items of Ltb(i) was relabeled since
tb we know that spantb(Ltb(i)) = spant(Lt(i)). The construction of Adversary

also implies that |Ltb(i)| ≥
|Itb (i)|

16
. Thus we obtain:

spant(Lt(i)) + 1 = spantb(Ltb(i)) + 1 ≥ |Ltb(i)|
δ · ρtb(Itb(i))

≥ |Itb(i)|
16 · δ · ρtb(Itb(i))

(Claim 8.6.1.2)

≥
spantb(Itb(i)) + 1

32
.

Similarly we proceed for Rt(i). Finally since

spant(It(i+ 1)) ≤ spant(It(i))− spant(Lt(i))− spant(Rt(i))− 2

and spant(It(i)) = spantb(Itb(i)) (Claim 8.6.7 Part (i)) the proof follows.

88

8.7 Relating Charge to Online Labeling Cost

In this section we define a charging scheme which assigns charge to inserted items.
Then we show that sum of these charges lower bounds the cost of the corresponding
labeling using the Adversary we defined. Finally we lower bound the sum of these
charges by showing that there is a constant fraction of items which have charge
bigger than some function which depends on depth.

Definition 8.7.1. For t ∈ {t0 + 1, . . . , n} we say that item yt was charged at
level i ∈ {1, . . . ,depth} iff t ∈

{⌈
tb+td

2

⌉
, . . . , td

}
where tb = birtht−1(i) and

td = deatht−1(i) and badt−1(i) is false. In such case we set

chargei(yt) =
|Itb(i)|

16(td − tb)
,

otherwise we say that yt was not charged and we set chargei(yt) = 0.

First we relate the actual cost of the corresponding labeling to the charge
of items. We partition Relt into levels. For each i ∈ {1, . . . ,depth}, t ∈
{t0 + 1, . . . , n} we define Relt(i) as follows:

1. for i < depth we set Relt(i) = {y ∈ It−1(i) \ It−1(i+ 1); y ∈ Relt}.

2. for i = depth we set Relt(i) = {y ∈ It−1(i); y ∈ Relt}.

Following properties of Relt(i) are immediate:

1.
⋃depth
i=1 Relt(i) ∪ yt = Relt

2. for each i, j ∈ {1, . . . ,depth}, i 6= j it holds that Relt(i) ∩Relt(j) = ∅.

These properties imply immediately the following claim:

Claim 8.7.2. It holds that χA ((y1, y2, . . . , yn),m) ≥
∑n

t=t0+1

∑depth
i=1 Relt(i).

Now we focus on good intervals for a while.

Claim 8.7.3. Let tb ∈ {t0, . . . , n} and i ∈ {1, . . . ,depth} such that tb = birthtb(i)
and let td = deathtb(i). If badtb(i) is false then it holds that

td∑
t′=tb+1

|Relt′(i)| ≥ d|Itb(i)|/16e.

89

Proof. Since td = deathtd−1(i) then Ltd−1(i) ∩Reltd 6= ∅ or Rtd−1(i) ∩Reltd 6= ∅
(or both). Let us assume that Ltd−1(i)∩Reltd 6= ∅ as the other case is symmetric.
Let L′ = {y ∈ Itb(i) \ Ltb(i); y < min(Itb(i+ 1))}.

First we show that for each t′ ∈ {tb, . . . , td} it holds that for each y ∈ L′ either

y ∈ It′(i) \ It′(i+ 1) or y ∈
⋃t′

t=tb+1 Relt(i). For t′ = tb this is true immediately as
it follows from the construction of the adversary.

Now consider t′ ∈ {tb + 1, . . . , td} such that for t′ − 1 the above claim is true.
Thus we can distinguish the following cases for each y ∈ L′:

(i) y ∈
⋃t′−1
t=tb+1 Relt(i) : it is obviously true that y is also in

⋃t′

t=tb+1 Relt(i)

(ii) y 6∈
⋃t′−1
t=tb+1 Relt(i) : then two cases may occur

(a) y ∈ Relt′ : then y ∈
⋃t′

t=tb+1 Relt(i) since y ∈ It′−1(i) \ It′−1(i+ 1)

(b) y 6∈ Relt′ : then Claim 8.6.4 implies that y ∈ It′(i) \ It′(i+ 1) since
y ∈ It′−1(i) \ It′−1(i+ 1)

Now we show that all items y ∈ L′ which are not int y ∈
⋃td−1
t=tb+1 Relt(i)

are in Reltd(i). Notice that for all such y’s it holds that max(Ltd−1(i)) < y <
min(Itd−1(i)). Together with the facts that A is lazy, Ltd−1(i) ∩Reltd 6= ∅ and ytd
was inserted “into” Itd−1(i) it follows that such y’s are in Reltd(i).

Thus we can infer that L′ + {max(Itd−1(i))} ⊆
⋃td
tb+1 Reltd(i) and the claim

follows since |L′| = b|Itb(i)|/16c which follows from the Rebuilding Rule for good
levels.

Lemma 8.7.4. Under Assumptions 8.5.1 let A be a lazy online labeling algorithm
with the parameters (n,m). If y1, y2, . . . , yn is the output of Adversary(A, n,m)
then χA ((y1, y2, . . . , yn),m) ≥

∑depth
i=1

∑n
t=t0+1 chargei(yt).

Proof. Let us fix some i ∈ {1, . . . ,depth}. Now we define a sequence bi as follows

1. b0 = t0

2. for i > 0, bi = deathbi−1
(i)

3. The sequence ends for j, such that bj = n.

Now consider the sequence of time intervals Tk where Tk = {bk + 1, . . . , bk+1}. By
charge(Tk) we denote

∑
t∈Tk chargei(yt). If badbk

(i) is false we can infer from
charge definition

charge(Tk) ≤
|Ibk(i)|

16(bk+1 − bk)
·
⌈
bk+1 − bk

2

⌉
,

90

as the charge of items yb(bk+bk+1)/2c, ybk+1, . . . , ybk+1
at level i is the same for all of

them.
If badbk

(i) is true we obtain charge(Tk) = 0.
Now we use Claim 8.7.3 to proceed as follows∑

t∈Tk

Relt(i) ≥
|Ibk(i)|

16
≥ charge(Tk),

if badbk
(i) is false, and

∑
t∈Tk Relt(i) ≥ 0 otherwise.

Let Tj denote the set of all time intervals for j ∈ {1, . . . ,depth}. Combining
above facts together with Claim 8.7.2 we obtain

χA ((y1, y2, . . . , yn),m) ≥
depth∑
i=1

∑
T∈Ti

charge(T) =

depth∑
i=1

n∑
t=t0+1

chargei(yt),

where the first inequality follows from the fact that intervals for the same level are
distinct as well as charges of particular item among all levels.

8.8 Estimating the Charge

In this section we prove a lower bound on the charge for items which are charged
on many levels. We proceed in two major steps. First we show that there are
many items which are charged on many levels. Then we estimate charge for such
items.

First we define charge#
i (y) to be one if y is charged at level i and 0 otherwise.

We say that item y is heavily charged if
∑depth

i=1 charge#
i (y) ≥

⌈
depth

16

⌉
. Now we

can lower bound the overall number of charges.

Claim 8.8.1. Under Assumptions 8.5.1 there are at least d n
32
e items among {yt0+1, yt0+2, . . . , yn}

which are heavily charged.

Proof. First we show that count =
∑n

t=t0+1

∑depth
i=1 charge#

i (yt) ≥ 1
2
· depth

4
· n

2
=

n·depth
16

.
Notice that |{yt0+1, yt0+2, . . . , yn}| ≥ n

2
. Obviously at least one half of items

inserted to particular level when it was good was charged and the number of
considered items is at least n

2
. In addition, no item can be charged twice on any

level. Putting this together with the Lemma 8.6.11 we obtain requested lower
bound on count.

Now for the sake of contradiction, let us assume that there is at most
⌈
n
32

⌉
− 1

items such that they are charged on at least
⌈
depth

16

⌉
levels while remaining n

2
−

91

⌈
n
32

⌉
+ 1 items are charged on at most

⌊
depth

16

⌋
levels. Under this assumption we

obtain, that the number of charged items is at most(⌈ n
32

⌉
− 1
)
· depth +

(n
2
−
⌈ n

32

⌉
+ 1
)
·
⌊

depth

16

⌋
<

n

32
depth +

n

32
depth.

Thus we have that number of charged items is smaller than n·depth
16

and therefore
we obtain a contradiction.

Before we state next claim we introduce ρ̂t(It(i)) to be equal to |It(i)|+1
spant(It(i))

. This

differs from ρt(It(i)) by increasing size of It(i) by one. Now we lower bound the
charge for each charged item.

Lemma 8.8.2. Under Assumptions 8.5.1 let yt be item charged on level i. Then

chargei(yt) ≥
1

512

δρ̂t−1(It−1(i))

δ2ρ̂t−1(It−1(i+ 1))− ρ̂t−1(It−1(i))
− 1

32 · δ2
.

To prove this lemma we first prove a couple of claims. The proof of the lemma
itself is on page 93. We start by showing some properties of ρ̂ similar to properties
of ρ in Lemma 8.6.8 and Lemma 8.6.10.

Claim 8.8.3. Under Assumptions 8.5.1 for each i ∈ {1, . . . ,depth− 1}, t ∈
{t0, . . . , n} it holds that ρ̂t(It(i)) < δ · ρ̂t(It(i+ 1)).

Proof. If ρ̂t(It(i+ 1)) ≥ ρ̂t(It(i)) the claim is trivial thus we focus on the other

case. From Lemma 8.6.8 and Lemma 8.6.10 we can deduce that 1
δ
≤ ρt(It(i+1))

ρt(It(i))
.

Now since
ρ̂t(It(i+ 1))

ρ̂t(It(i))
=
ρt(It(i+ 1)) + 1

spant(It(i+1))

ρt(It(i)) + 1
spant(It(i))

, and

1

spant(It(i))
≤ 1

spant(It(i+ 1))

proof follows immediately.

Next we continue with the claim which shows an upper bound on birtht(i)−
deatht(i) (which equals to denominator of charge of yt).

Claim 8.8.4. Under Assumptions 8.5.1 let yt be the item charged at level i. Let
tb = birtht−1(i) and td = deatht−1(i). Then

tb − td ≤ 2 · (|It−1(i)| − |Itb(i)|+ 1).

92

Proof. Since yt was charged at level i it holds that t ≥
⌈
td+tb

2

⌉
. Thus we can infer

2 · (t− tb) ≥ 2 ·
(⌈

td + tb
2

⌉
− tb

)
≥ td + tb − 2 · tb = td − tb.

It remains to realize that t− tb = |It−1(i)| − |Itb(i)|+ 1 (Claim 8.6.4).

Now we can estimate ρtb(Itb(i)).

Claim 8.8.5. Under Assumptions 8.5.1 let t ∈ {t0 + 1, . . . , n} and i ∈ {1, . . . ,depth− 1}
be such that badt(i) is false. Let tb = birtht−1(i). It holds

ρtb(Itb(i)) ≥
|It−1(i)| − |It−1(i+ 1)|

δ · (spant−1(It−1(i))− spant−1(It−1(i+ 1)))
.

Proof. Let L′ = {y ∈ It−1(i); y < min(It−1(i+ 1))} and R′ = {y ∈ It−1(i); y >
max(It−1(i+ 1))}. From Claim 8.6.4 we can infer that none of items of L′ and R′

was relabeled since tb. Thus we can infer from the definition of the adversary that
ρt(L

′) ≤ δ · ρtb(Itb(i)) and ρt(R
′) ≤ δ · ρtb(Itb(i)). Thus we obtain

|It−1(i)| − |It−1(i+ 1)|
δ(spant−1(It−1(i))− spant−1(It−1(i+ 1)))

≤ |R′|+ |L′|
δ · (spantb(R

′) + spantb(L
′) + 2)

≤ ρtb(Itb(i)).

The last inequality follows from the fact that |R′| ≤ δ ·ρtb(Itb(i)) · (spantb(R
′) + 1)

and also |L′| ≤ δ · ρtb(Itb(i)) · (spantb(L
′) + 1).

Merging these claims together we can finish the proof of Lemma 8.8.2.

Proof of Lemma 8.8.2. To make the computations easier to follow we introduce
the following notations. We set I = It−1(i), I ′ = It−1(i+ 1), tb = birtht(i), td =
deatht(i), ` = spant−1(I) + 1, `′ = spant−1(I ′) + 1, ρ̂ = ρ̂t−1(I) and ρ̂′ = ρ̂t−1(I ′).

93

The proof is done by the following chain of inequalities

chargei(yt) =
|Itb(i)|

16(tb − td)
≥ |Itb(i)|

16 · 2 · (|I| − |Itb(i)|+ 1)
(Claim 8.8.4)

≥ 1

32
· ` · ρtb(Itb(i))
` · ρ̂− ` · ρtb(Itb(i))

(Lemma 8.6.7)

≥ 1

32
·

|I|−|I′|
δ(`−`′)

δρ̂′ − |I|−|I′|
δ(`−`′)

(Claim 8.8.5, Claim 8.8.3)

=
1

32
· |I|+ 1− |I ′| − 1

δ2 · ρ̂′`− δ2 · ρ̂′`′ − |I| − 1 + |I ′|+ 1

=
1

32
· ρ̂`− ρ̂′`′

δ2 · ρ̂′`− δ2 · ρ̂′`′ − ρ̂`+ ρ̂′`′
≥ 1

32
·
ρ̂− ρ̂′ `′

`

δ2ρ̂′ − ρ̂
(Claim 8.6.1.2)

=
1

32
·
ρ̂− ρ̂′ `′

`
+ ρ̂′ `

′

δ2`
− ρ̂′ `′

δ2`

δ2ρ̂′ − ρ̂
=

1

32
· `
′(−δ2ρ̂′ + ρ̂)

δ2` · (δ2ρ̂′ − ρ̂)
+

1

32
·
ρ̂− ρ̂ `′

`δ2

δ2ρ̂′ − ρ̂

≥ − 1

32δ2
+

1

32 · 16
· ρ̂

δ2ρ̂′ − ρ̂
(Claim 8.6.1.2, Lemma 8.6.12)

Now we focus on heavily charged items.

Lemma 8.8.6. For each heavily charged item yt it holds that

depth∑
i=1

chargei(yt) ≥
depth2

245 · (logm− log n+ 2)
− depth

210
.

Proof. During the proof we fix time t when yt was inserted. We define C to be a
set of i’s such that yt was charged on the level i. Obviously

depth∑
i=1

chargei(yt) =
∑
i∈C

chargei(yt)

≥
∑
i∈C

− 1

32 · δ2
+

1

512
· ρ̂t−1(It−1(i))

δ2ρ̂t−1(It−1(i+ 1))− ρ̂t−1(It−1(i))
.

We focus on
∑

i∈C
ρ̂t(It(i))

δ2ρ̂t(It(i+1))−ρ̂t(It(i)) as the summation of the remaining parts is

simple. Let ri = ρ̂t(It(i+1))
ρ̂t(It(i))

. Notice that Claim 8.8.3 implies that ri ≥ 1
δ
. We use

this fact in the following claim.

Claim 8.8.7. Let r =
∏

i∈C ri. Then r ≤ 4m
n
· δdepth.

94

Proof. First notice that
∏

i∈C ri ≤ δdepth−|C| ·
∏depth−1

i=1 ri. It follows from the fact

that each ri, it holds that riδ ≥ 1 (Claim 8.8.3). Also we have
∏depth−1

i=1 ri ≤
4m
n

since for each t ≥ t0 we have ρ̂t(It(1)) ≥ ρt(It(1)) ≥ n+2
2m+4

≥ n
2m

and
ρ̂t(It(depth)) ≤ ρt(It(depth)) + 1 ≤ 2. Finally since δ ≥ 1 (Claim 8.6.1.2)
the proof is finished.

Previous claim implies the following claim.

Claim 8.8.8. It holds that (log2 r)/|C| ≤ 24 log2 δ.

Proof. First we rewrite the expression as follows using the Claim 8.8.7 and Claim 8.8.1.

log(r)/|C| =
log
(

4m
n
· δdepth

)
|C|

≤ 16 · log δ + 16 ·
log 4m

n

depth
.

Recall that log δ = 2 · log 4m
n

depth
and therefore we can use Claim 8.6.1.2 to obtain

the following

16 · log δ + 16 ·
log 4m

n

depth
= 24 log δ,

which finishes the proof.

Now we use these claims to finish the proof of the Lemma 8.8.6. First notice
that ∑

i∈C

ρ̂t(It(i+ 1))

δ2ρ̂t(It(i+ 1))− ρ̂t(It(i))
=
∑
i∈C

ri
δ2ri − 1

≥ 1

δ

∑
i∈C

1

δ2ri − 1

=
1

δ

∑
i∈C

1

δ22log ri − 1
.

To minimize this sum we use Jensen’s inequality. Consider the function f(x) =
1

δ22x−1
and logarithm of

∏
i∈C ri which is

∑
i∈C log ri. Since f(x) is convex for

x > 2 · log 1
δ

it follows from Jensen’s inequality that our sum is minimized when
all ri are equal. Thus we choose ri = r1/|C| and we continue as follows

1

δ
·
∑
i∈C

1

δ2ri − 1
≥ 1

δ
· |C|
δ2r1/|C| − 1

=
1

δ
· |C|

22·log2 δ+(log2 r)/|C| − 1
.

Now Claim 8.6.1.2 and Claim 8.8.8 imply that

2 · log2 δ + (log2 r)/|C| ≤ 26 · log2 δ ≤ 26.

95

Thus we can use the fact that for x, 0 ≤ x ≤ 26 it holds that 2x − 1 ≤ 226 · x.
Applying this to the fraction we have, we obtain

1

δ
· |C|

2log2 δ+(log2 r)/|C| − 1
≥ 1

δ
· |C|

226 · 26 · log δ

≥ |C|

δ · 226 · 26 · 16 · log 4m
n

|C|

≥ |C|2

δ · 235 · log 4m
n

.

To finish the proof of Lemma 8.8.6 we plug this into the original equation so
that we obtain∑

i∈C

chargei(yt) ≥ −
C

32 · δ
+

δ

512
· |C|2

δ · 235 · log 4m
n

≥ depth2

252 · (logm− log n+ 2)
− depth

25
,

where the last inequality follows from the Claim 8.8.1 and Claim 8.6.1.2.

Now we have all the necessary ingredients to prove the main lemma of the
section.
Proof of Lemma 8.5.2. The lemma is an immediate consequence of the Claim 8.8.1
and Lemma 8.8.6

96

9. Online Labeling with Small
Label Space and Universe

9.1 Introduction

In this chapter we prove an Ω(n log2(n)) lower bound on the number of moves
for inserting n items into an array of size m = O(n) for any deterministic online
labeling algorithm, matching the known upper bound up to constant factors. For
the case of array of size m ≤ n + n1−ε (where ε is a positive constant) we prove
the asymptotically optimal lower bound Ω(n log3(n)).

All upper bounds from Part I work for any input domain size (arbitrary r). As
noted before, if r ≤ m then there is a trivial solution of cost n. A natural question
(which has not, to our knowledge, been addressed previously in the literature) is
whether it might be possible to improve the O(n log2(n)) upper bound if r is much
larger than m but still restricted. Our lower bounds rule out such an improvement:
we obtain an Ω(n log2(n)) lower bound provided that r is at least a sufficiently large
constant times m.

Our lower bounds extend to slightly superlinear array size. For example, in the
casem = O(n log1−ε(n)) our results give an Ω(n log1+ε/3(n)) lower bound (provided
that the range size r is large enough). This, however, is inferior to what we showed
in Chapter 8. On the other hand, in Chapter 8 we do not handle optimally arrays
of size m ≤ n + n1−ε (i.e. very small arrays) and we do not consider the case of
small item universe.

This chapter is based on joint work with Michal Koucký and Michael Saks [10]
which was the first lower bound for general algorithms in the small space regime.
Previously Dietz et al. [12, 21] proved a Ω(n log2(n)) lower bound for the restricted
case of so-called smooth algorithms. These lower bounds are especially interesting
because the best known algorithms for the problem are smooth. Nevertheless, the
restriction to smooth algorithms is significant. The lower bound for the small space
regime of smooth algorithms is obtained by considering the trivial adversary that
inserts items in decreasing order. This lower bound clearly relies heavily on the
smoothness of the algorithm; a non-smooth algorithm can easily handle the given
adversary with constant amortized time per item. It was not known whether a
non-smooth algorithm could give a significant advantage over a smooth algorithm
on general inputs. Our lower bound rules this out.

There is some confusion in the literature regarding the lower bounds of [12, 21];
the fact that they apply only to smooth algorithms is sometimes not mentioned
([7]), creating the impression that the general lower bound was already established.

97

9.2 Proof Techniques

We will describe our results in the language of the file maintenance problem, in
which arriving items are placed in an array, rather than the online labeling problem.
Our main lemma (Lemma 9.4.1) gives a lower bound on the cost of inserting n
additional items into an array that is already partially full with n0 ≥ n items. The
Ω(n log2(n)) lower bound for file maintenance problem for the case that m = Θ(n)
is obtained by applying this lemma to bound the cost of inserting the second half
of the items given that the first half of the items are initially in the array. The
Ω(log3(n)) lower bound for an array of size m ≤ n+ n1−ε is obtained by iterative
application of the main lemma Θ(log n) times where we initially start with half of
the items in the array, and in each iteration we insert half of the remaining items.
The main lemma shows that each iteration costs Θ(n log2(n)). This parallels the
structure of the iterative algorithm of Chapter 3 that gives a matching upper
bound.

The general idea for proving the lemma builds heavily on the prior work [12, 21,
13] and is similar to ideas in Chapter 8. Adversary constructions in the previous
chapters use a chain of intervals of items as a guide to selecting the next item.
In this section we use a dual approach, the adversary will maintain a chain of
nested segments of the array. Recall, that the key challenge is to give an adversary
procedure for building segment chains that ensures large buffers, but the density
degrades very slowly. The previous chapter builds on the observation that if for
a given segment every subsegment having large buffers has density significantly
smaller than the given segment, then there must be a large subsegment (located
near the boundary of the given segment) having substantially higher density than
the given segment. This allows us to build a chain of Θ(log(n)) segments, such
that (1) a constant fraction of the segments have large buffers with respect to their
predecessors (good segments), (2) the segments that don’t have large buffers have
significantly higher density than their predecessor segments (bad segments), and
(3) the degradation of density along the entire chain can be bounded by a constant
factor. (To give a rough idea of the choice of parameters, when m = Θ(n), we
allow decrease in density by a factor of at most (1−O(1/ log(n))) in a single step.)

The adversary used in this chapter doesn’t work exactly like this. Unlike in
previous chapter we collapse consecutive bad segments into one and then we omit
them from the chain. Thus, the chain of segments is built so that every segment
in the chain (not just a constant fraction) has left and right buffers whose sizes
are a constant fraction of the length of the segment. We do this by relaxing
the requirement that the length of each segment in the chain is at least a constant
fraction of the length of its predecessor. If we encounter a segment whose items are
concentrated near the boundary then the next segment will be a small subsegment
of high enough density whose distance from the boundary is large relative to its own

98

size, even if this distance is small relative to the size of the predecessor segment.
This raises a new problem: once we allow successive subsegments to shrink by
more than a constant fraction we face the problem that the length of the segment
chain d may not be Ω(log(n)). This is important because the lower bound that
comes out of the analysis is proportional to d2. So we need to ensure that the
chains have length Ω(log(n)) even though we allow the length of segments to drop
significantly. This is accomplished by a procedure (see Lemma 9.11.2) that allows
us to construct a sequence of segments where each selected segment satisfies a
strong uniformity property called lower balance: It has no subsegment of length
at least 1/4 of its length that has density significantly smaller than the given
segment. (In the lower bound for smooth algorithms mentioned earlier, the ability
to find such a sequence is essentially built into the smoothness restriction. Our
construction allows us to dispense with this assumption.) To find the successor
segment S ′ of a given segment S we first restrict to the middle third T of the
segment and choose S ′ to be a subsegment of T . The restriction to a subsegment
of T ensures that S ′ has large buffers relative to S. Furthermore, the uniformity
property of S ensures that the density of T is close to that of S. We want to choose
S ′ inside T having density at least that of T , having size not much smaller than T ,
and having the desired uniformity property. To identify S ′ we maximize a certain
quality function of the form ρ(I)|I|κ (where ρ(I) is the density of items stored
in I and κ is a small positive parameter). This balances the requirement that S ′

have high density and large size. Furthermore, choosing S ′ in this way guarantees
that S ′ has the needed uniformity property (since the presence of a subsegment
that violates the uniformity property would imply that there is a subsegment of S ′

that has a higher quality). Maximizing the quality function implicitly captures the
process of successively choosing subsegments of significantly higher density until
one arrives at a subsegment for which no such selection is possible.

After identifying a segment chain with the required properties at each step, the
item selected by the adversary to insert is one whose value is between two items
stored in the final segment of the chain. Whenever the maintenance algorithm
rearranges some portion of the array the adversary rebuilds the affected portion
of the segment chain. To obtain our lower bound Ω(n log2(n)) we use a careful
accounting argument (see Lemma 9.7.1) that encapsulates and extends the clever
argument used in [12, 21] to obtain an Ω(n log2(n)) bound for smooth algorithms.
(Which are similar to Chapter 8)

There is one additional complication that arises because we want our lower
bounds to apply even in the case that the range r of items is relatively small. In
a given step, after selecting the chain, the adversary is supposed to choose the
next item to insert to be an item that is between two items currently stored in the
final segment of the chain. However, if the set of items stored in the final segment

99

are a consecutive subset of the set of possible values, the adversary is unable to
choose an item to insert. Of course this is not a problem if the range of values is,
for example, all rationals in a given interval but it is a potential problem if the
range is a bounded subset of the integers. For example, we noted earlier that if the
range of possible items is small enough, r ≤ m, then there is a trivial algorithm
that incurs only unit cost per item, so our lower bound proof must fail. How large
does r have to be so that the adversary described above can avoid this problem?
It is not hard to show that r ≥ 2n is sufficient, but in fact when m = O(n) we
only need r to be a (sufficiently large) constant multiple of n. To carry out the
argument for such small r, we modify the definition of density of segments by
weighting more recent items with a smaller (but still non-negligible) weight than
older items. When our adversary selects a segment chain, the decreased weight
on recent items will tilt the adversary to prefer segments that are crowded mainly
with older items over segments crowded mainly with newer items (unless the latter
is significantly more crowded than the former). The reason we want to do this is
that if the adversary continues to place items in a segment that mainly has newer
items there is a risk (because of the limited range size r) that the adversary will
end up with a segment where the items are consecutive integers, and not have
another item to insert. By giving more recent items a smaller (but not too small)
weight we can avoid this possibility; see Lemma 9.6.1.

9.3 The Main Results

In this section, we state our lower bound results for χ (n,m, r). We divide our
results into two theorems, corresponding to the relation between the array size
and the number of items. In formulating the theorems, we use N for the number
of items rather, to avoid confusion with the parameter n appearing in the Main
Lemma (Lemma 9.4.1 below), which is used in the proof of the theorems, and in
which n stands for the number of items inserted during a portion of the game.

The first theorem applies whenever 2N ≤ m, and gives interesting results
provided that m is not too large (slightly superlinear function of N). In the first
part of the theorem, the range {1, . . . , r} of possible items has size exponential
in N . In the second part, r is at most a constant times m. Despite this strong
limitation, the lower bound is only slightly worse.

Theorem 9.3.1. There is a (sufficiently large) constant C2 so that the following
holds. Let m,N be integers satisfying C2 ≤ N and 2N ≤ m. Let δ = N/m. Then

1. If r ≥ N2N−1 then χ (N,m, r) ≥ N log2(N) δ
C2(log(1/δ))2

.

2. If r ≥ C2m then χ (N,m, r) ≥ N log2(N) δ2

C2(log(1/δ))2
.

100

Recall, the base of logarithms is 2.
In both parts, if m = O(N) so that δ = O(1) then the lower bound obtained

is Ω(N log2(N)). The messy dependence on δ tells how our bound degrades in the
case of δ = o(1), i.e., the array is much larger than the number of items. The first
bound gives a nontrivial ω(n) bound for m up to o(n log2(N)/ log2(log(N))), while
the second bound is nontrivial for m = o(N log(N)/ log log(N)).

In the next result we consider array size satisfying N < m < 2N :

Theorem 9.3.2. There are (sufficiently large) constants C2, C3 so that the follow-
ing holds. Let m,N be integers satisfying C3 ≤ N < m < 2N and let δ = N/m.
Assume r ≥ (1

1−δ)
C2N . Then:

χ (N,m, r) ≥ 1

C3

N log2(N) log

(
1

1− δ

)
. (9.1)

In this theorem, the array size is assumed to be at most twice the number of
items. As long as m ≥ n(1 + c) for a fixed c > 0 we again get an Ω(N log2(N))
bound. Asm−n gets smaller, the bound improves. In particular, form ≤ N+N1−ε

this gives a tight lower bound of Ω(N log3(N)). For this lower bound we only need
the range of items to be polynomial in m. (We believe that it is possible to refine
the analysis to obtain an asymptotically similar lower bound when the range size
is only N + N1−O(ε) but have not included this analysis so as not to lengthen an
already lengthy proof.)

9.4 Reduction of the Theorems to the Main Lemma

As the game has been defined, every cell is initially unoccupied. For the proofs of
the main theorems, it will be convenient to consider a generalization of the game,
in which the array is initially partially full. This version of the game is specified
by the parameters n,m (but not r) and additionally takes a set Y0 of items, whose
size is denoted by n0 and is required to be at least 2. The subset Y0 is given to
the algorithm who selects the initial storage function f0 (at no cost). The game
then proceeds as before, except that the adversary is restricted to inserting items
in the range (min(Y0),max(Y0)) (where we assume |Y0| ≥ 2). During the game,
items y1, y2, . . . , yn are inserted and the algorithm defines allocations f1, f2, . . . , fn.
The set Yt is defined as Y0 ∪ {y1, . . . , yt}. Let us emphasize, that this is different
to previous chapter.

Note that the parameter r does not appear in this formulation.
We denote the game by G(n,m|Y0) and write χA (n,m|Y0) for the minimum

cost that can be achieved by the algorithm A against the best adversary. We
assume that m ≥ n0 + n, otherwise there is not enough room to insert all of the

101

items. For a set Y of items, we define mingap(Y) to be the minimum absolute
difference between pairs of items in Y .

Now we state the central result of Chapter 9:

Lemma 9.4.1. (The Main Lemma) There are positive constants C0, C4 so that
the following holds. Let m,n, n0 be integers and let δ0 = n0/m where:

C0 ≤ n ≤ n0 (9.2)

n+ n0 ≤ m (9.3)

δ0 ∈ (log−2(n), 1− n−1/5). (9.4)

Let Y0 be any set of n0 items and let µ0 = mingap(Y0).

1. If µ0 ≥ 2n then

χ (n,m|Y0) ≥ n(log2(n))
δ0(1− δ0)

C4 log2(1/δ0)
.

2. If µ0 ≥ 1 + 12/δ0, then

χ (n,m|Y0) ≥ n(log2(n))
δ0

2(1− δ0)

C4 log2(1/δ0)
.

We point out that the condition n0 ≥ n means that the new items being added
at most doubles the number of items in the array.

We now prove Theorems 9.3.1 and 9.3.2 using Lemma 9.4.1. In the proof of
the first theorem we apply the main lemma once with δ0 = 1/2, and in the proof
of the second theorem we’ll apply the main lemma multiple times, with δ0 getting
closer and closer to 1 (which is why the dependence on δ0 in the lower bound is
important.) In every application of the main lemma, the array size parameter m
of the lemma will be the same as the array size parameter m in the theorem being
proved, but the number of items n in the lemma will vary and won’t be the same
as the number N in the theorem being proved.
Proof of Theorem 9.3.1. In the argument below we choose C2 for the theorem
large enough depending on C4 in Lemma 9.4.1.

Given N,m, r for the theorem, let n0 = dN/2e and n = N − n0. Let B be
the largest integer such that n0B ≤ r. Let Y0 = {B · t : t ∈ {1, . . . , n0}}. Note
that mingap(Y0) = B. Consider the adversary for G(n,m, r) that during the first
n0 steps inserts Y0 and then follows the optimal adversary strategy for the game
G(n,m|Y0).

For the first part of Theorem 9.3.1, the hypothesis that r ≥ N2N−1 implies
mingap(Y0) ≥ 2n so the first part of Lemma 9.4.1 applies. Under the hypothesis

102

of Theorem 9.3.1, 1 − δ0 ≥ 1/2, and so the conclusion of Lemma 9.4.1 yields the
conclusion of the first part of Theorem 9.3.1.

For the second part of Theorem 9.3.1, the hypothesis r ≥ C2m and our freedom
to choose C2 to be a sufficiently large constant imply B ≥ bC2m/n0c ≥ C2/δ0−1 ≥
12/δ0 + 1 and so part (2) of Lemma 9.4.1 gives the desired lower bound.

We next turn to the proof of Theorem 9.3.2. The idea of the proof is simple:
The array size m is not much larger than N . We bound the cost as the sum of
the costs of p = Θ(log(1/(1 − δ))) “subgames” where the first subgame starts
when the array is (roughly) half full and consists of inserting the next (roughly)
m/4 items. After subgame i − 1 the number of empty spaces in the array is
(roughly) m/2i and in the ith subgame we insert (roughly) m/2i+1 additional
items. Corollary 9.4.2 below (deduced from Lemma 9.4.1) says that that each
phase has cost Ω(m log2(m)); even though the number of items inserted per phase
is decreasing by a factor of 2, this is counterbalanced by the increased crowding of
the array.

The following consequence of Lemma 9.4.1 is what we need to analyze a single
subgame.

Corollary 9.4.2. There are positive constants C0, C5 so that the following holds.
Let m,n be integers satisfying C0 ≤ (m/2)5/6 ≤ n ≤ m/3. Let Y0 be any set of
m− 2n items such that µ0 = mingap(Y0) ≥ 37. Then:

χ (n,m|Y0) ≥ 1

C5

m log2(m).

Furthermore, there is an adversary that achieves this bound and has the ad-
ditional property that the mingap of the items in the array after inserting the n
items is at least bµ0/37c.

Proof. For the first conclusion, we apply the second part of the main lemma with
n0 = m − 2n and δ0 = n0/m = 1 − 2n

m
. We need to check the hypotheses of the

lemma. Hypothesis (9.2) and (9.3) are immediate. Since n ≤ m/3 and m ≤ 2n6/5

we have 1/3 ≤ δ0 ≤ 1 − n−1/5 as required for (9.3), and also that µ0 ≥ 37 is at
least 1 + 12/δ0. Therefore the hypotheses of part 2 of the lemma hold, and from
the conclusion we get:

χ (n,m|Y0) ≥ n log2(n)
δ2

0(1− δ0)

C4 log2(1/δ0)

≥ m(1− δ0)

3
log2((m/3)5/6)

1

42 · C4

1− δ0

log2(1/δj−1)

≥ m log2(m) · 1

C5

,

103

where the final inequality uses the (numerical) fact that for δ0 ∈ {1/4, . . . , 1},
log(1/δ0) ≤ 3(1 − δ0), and the fact that C5 can be chosen to be a large enough
constant.

For the second conclusion, for ease of notation we use B to represent the
number 37. We first the case that r = Bn0 and Y0 is the set {B, 2B, . . . , n0B}.
Thus µ0 = B. By part 2 of Lemma 9.4.1 here is an adversary strategy Γ for
inserting the next n items that forces the claimed lower bound on χ (n,m|Y0).
The mingap is at least 1, as required.

Now consider the general case that r is arbitrary and Y0 is a set of size n0 with
mingap at least B. Let v1 < · · · < vn0 be the items in Y0. Let G = bµ0/Bc. For
1 ≤ j < n0, let Vj be the set of items of the form vj + iG where 1 ≤ i ≤ B − 1
and let V = V1 ∪ · · · ∪ Vn0−1. The smallest item of Vj is vj +G and the largest is
at most at most vj+1 − G. Thus the set V contains exactly B − 1 items between
each pair vj, vj+1 and so V ∪ Y0 is combinatorially equivalent to the above case
that Y0 is the set {B, 2B, . . . , n0B}. By the obvious adaptation of the strategy for
that case, we can carry out the adversary strategy while only inserting items from
V , so that at the conclusion of the game, the set of inserted items is a subset of
Y0 ∪ V , and the mingap of this set is at least G = bµ0/Bc.

We now fill in the (routine) details of the above sketch of the proof of Theo-
rem 9.3.2.
Proof of Theorem 9.3.2. Let m, N and δ be given as in the theorem. Suppose
first that δ = N/m is bounded above by 1− c for some positive constant c. Then
Theorem 9.3.2 follows from the second part of Theorem 9.3.1, since the quantity
δ/ log(1/δ) appearing in the conclusion of Theorem 9.3.1(2) can be bounded below
by a positive constant and the quantity log(1/(1− δ)) appearing in the conclusion
of Theorem 9.3.2(1) can be bounded above by a positive constant.

We are left with the (main) case that δ > 1 − c for a constant c > 0 of our
choice; for convenience we assume c ≤ 1/16 which implies, in particular that
log(1/(1 − δ)) ≥ 4. Let ∆ = m − N and let p be the largest integer such that
2p∆ < m/2, so:

p =
⌊
log2

(m
2

∆
)⌋
≥ log

(
1

1− δ

)
− 2 ≥ 1

2
log

(
1

1− δ

)
.

Define for i ∈ {0, . . . , p}, zi = m− 2p−i∆ and let ni = 2p−i∆ = zi − zi−1.
For the game of inserting N items into an empty array of size m, we identify

p subgames where the subgrames involve disjoint sets of steps. Subgame i starts
after zi−1 were inserted and consists of inserting the next ni items, so it ends after
a total of zi items are inserted.

Each subgame satisfies the hypothesis of the corollary, and so we can bound
the cost from below by Θ(m log2(m)) = Θ(N log2(N)). So the total cost can be

104

bounded below by this times p = Ω(log(1/(1− δ))).
The remainder of the chapter is devoted to proving Lemma 9.4.1. Throughout

the rest of the chapter, the input parameters to the lemma are fixed.

m: The array size.

Y0: The set of initial items.

n0: The size of Y0.

µ0: The mingap of Y0.

δ0: The initial density n0/m.

n: The number of items to be inserted.

The rest of the chapter is organized as follows.

• Section 9.5 gives some additional notation.

• Section 9.6 gives a full description of the adversary. The adversary is not too
difficult to describe but the choices made may strike the reader as somewhat
arbitrary. The subsequent discussion will (we hope) demystify the adversary.

• In Section 9.7, we formulate seven (parameterized) properties of the ad-
versary. We then state two main lemmas. Lemma 9.7.1 asserts that any
adversary that satisfies these properties forces any algorithm to pay a high
cost. Lemma 9.7.2 asserts that our adversary has these seven properties. We
show how the main lemma follows easily from these two lemmas.

• In Section 9.9 we prove Lemma 9.7.1, showing that an adversary satisfying
these seven properties give a good lower bound on any algorithm. We start
with a sketch of the main idea of the proof and then follow with the full
proof.

• In Section 9.10 we establish that our adversary has these seven properties
by proving Lemma 9.7.2. We begin the section with an informal discussion
of how these properties led us to the chosen adversary.

Lemma 9.4.1 was formulated in sufficient generality (in terms of n, n0, m and
µ0, so as to be able to prove both Theorems 9.3.2 and 9.3.1. These include both
cases that the range of possible numbers is very large, or rather small and also
very dense case where δ0 = n0/m is very close to 1. The reader may wish to focus
on the following restrictions:

105

• n0 = n = Θ(m). (We’ll refer to this as the case of small constant density.)

• r ≥ 2m. (We’ll refer to this as the case of large initial mingap.)

We refer to this restricted case as the illustrative case. This setting of parameters
is enough to prove the first part of Theorem 9.3.2 in the case that N = Θ(m) and
captures most of the difficulty of the proof. In organizing the proof, we considered
first presenting the proof for this case, and only then doing the general proof, but
decided against it because it would require either duplicating much of the proof of
the special case when doing the general proof, or leaving the reader to extrapolate
the general proof based on the special case and a sketch of the differences. We’ll
provide some guideposts in the proof that will allow the reader to simplify details
of the general proof in order to focus on the illustrative case.

9.5 Some Notation and Preliminaries for the Proof of the

Main Lemma

We introduce and recall some terminology:

• A segment is a subinterval of the set of cells {1, . . . ,m}.

• A step interval is a subinterval of {0, . . . , n} representing a sequence of con-
secutive steps of the game.

• We say that I is an items interval of Y if

I = Y ∩ {min(I), . . . ,max(I)} .

Recall that at step t, Relt denotes the set of items moved at step t. For
y ∈ Relt the trail of y at step t is the segment Trailt(y) between ft−1(y) and ft(y);
for yt it is just the location ft(yt). The busy region at step t, denoted Bt is the
union over y ∈ Relt of Trailt(y).

9.6 A Description of the Adversary for Lemma 9.4.1

In this section we present our adversary strategy. The first subsection discusses the
preliminary notion of a gap, which is a pair of items that have been inserted such
that no item between them has been inserted yet. The second subsection describes
the class of segment chain strategies which includes our adversary strategy. The
third subsection specifies our strategy within this class.

106

9.6.1 Gaps and suitable gaps

During each step t the adversary must choose an item yt to insert into the array.
For a set Y of items, a Y -gap is a pair yL < yR of items belonging to Y such that
no item of Y has value in the item interval (yL, yR). The gap length is yR − yL.
We emphasize that a gap refers to the set of possible item values between yL and
yR and not to the region of the array in which the items are stored.

Provided that a gap has length at least 2, there is always an item between yL

and yR that is available to be inserted. We call such a gap suitable. A suitable
segment is one that contains a suitable gap. The condition of being a suitable
segment is equivalent to: the set of items currently stored in the segment is not a
consecutive sequence of integers.

Our adversary will choose a suitable segment, identify the longest suitable gap
(yL, yR) stored in the segment and select the item b(yL + yR)/2c, which is the
midpoint of the gap rounded down to the nearest integer. The segment (resp.,
gap) chosen by the adversary at step t is referred to as the chosen segment (resp.,
gap) at step t.

When the adversary selects the segment S, we must ensure that S contains
a suitable gap. For mingap(Y0) ≥ 2n (as in the illustrative setting mentioned
at the end of Section 9.4), an easy induction shows that mingap(Yt) ≥ 2n−t for
every t < n. Therefore any segment S that contains at least two items is suitable.
We refer to this case as large initial mingap. In the case of small initial mingap,
mingap(Y0) < 2n, we need to be more careful to ensure that the selected segment
is suitable. This will complicate things a bit, but not in any significant way. The
reader may wish to focus on the case of large initial mingap; we will identify the
places in the argument where the arguments diverge.

The choice of the suitable segment at step t will depend on the configuration
(Yt−1, ft−1). Intuitively, the adversary will select a suitable segment that is current-
ly located in an area of the array that is relatively “crowded”. A natural notion of
crowding for a segment S is the ratio of the number of items stored in the segment
to the length of the segment. This notion of crowding is sufficient for the case of
large initial mingap.

To handle both the case of large and small initial mingap, we need a notion of
crowding that depends on a weight parameter λ ∈ (0, 1]. Each item in the array
is assigned a weight which is 1 if the item belongs to the initial set Y0 and is λ
if it was inserted by the adversary. Given a configuration (Y, f), we define the
following functions on segments S ⊆ {1, . . . ,m}:

• The weight w(S) = w(S, f) is the sum of the weights of all items stored in
S under f .

• The density ρ(S) = ρ(S, f) is w(S)/|S|. The density function provides a

107

natural measure of crowding of S.

The weight and density with respect to allocation ft are denoted wt and ρt respec-
tively.

In the case of large initial mingap (mingap(Y0) ≥ 2n) we set the weight pa-
rameter λ to 1. Thus the weight of a segment is just the number of items stored
in it and the density is the fraction of occupied cells. This is the only difference
between this case and the case of small initial mingap.

The following lemma shows that by choosing λ appropriately we can get a
sufficient condition for a segment to contain a suitable gap. Readers who wish to
concentrate only on the case of large mingap can skip to the next subsection.

Lemma 9.6.1. (Suitable Gap Lemma) Suppose that λ ∈ (0, 1/2). Let Y be a set
of integer items with a specified set Y0 of initial item, let S ⊆ {1, . . . ,m} be a
segment and f an arbitrary allocation. Let A be the set of items from Y0 stored in
S and B be the set of other items stored in S with respect to f . Define the weight
w(S) to be |A|+ λ|B| and its density ρ(S) to be w(S)/|S|. If:

1. The mingap of Y0 is at least 1 + 1
2λ

2. w(S) ≥ 2

3. ρ(S) ≥ 2λ.

Then S is suitable, i.e. the set of items stored in S is not consecutive.

The key hypothesis is ρ(S) ≥ 2λ. Since non-initial items are given weight only
λ, an interval S of density at least 2λ must have a substantial fraction of initial
items. Since the mingap of Y0 is not too small, we will be able to show that there
is a pair x < y of items stored in S that form a gap in Y0 that have fewer than
µ(Y0) items are stored between them in S, which implies that there is at least one
item between them that has not been inserted yet, so S is suitable.

Proof. Let a = |A| and b = |B|. We first note that a ≥ bλ. This follows from
w(S) = a+ bλ = (a+ b)ρ(S) ≥ 2(a+ b)λ so (1− 2λ)a > bλ which implies a > bλ
In particular, this implies a ≥ 2, since a is an integer larger than (a + bλ)/2 =
w(S)/2 ≥ 1.

Let minA and maxA be the smallest and largest items in A. Suppose for
contradiction that there is no suitable gap between minA and maxA. Then all of
the maxA−minA +1 items in the range {minA, . . . ,maxA}must have been inserted
already. There are a− 1 gaps between items of A, each of size at least µ(Y0) so by
the hypothesis on λ, b ≥ (a− 1)(µ0 − 1) ≥ 2(a− 1)/λ ≥ a/λ (since a ≥ 2) which
contradicts a > bλ.

108

When we design our adversary strategy to prove Lemma 9.4.1 we will ensure
that (for the case of small mingap) the segment selected by the algorithm satisfies
the hypotheses of the suitable gap lemma. We haven’t explained our strategy yet
so we can’t show this, but we sketch how this is done. We’ll choose λ to be δ0/6.
Then the hypothesis µ(Y0) ≥ 1 + 12/δ0 from part 2 of Lemma 9.4.1 gives the
needed lower bound on µ(Y0) in this lemma. Also our strategy will always choose
a segment of weight at least 2, and density at least δ0/3 = 2λ, so the hypotheses
of the suitable gap lemma will be satisfied.

9.6.2 Segment chain strategies

This section describes a general class of adversary strategies from which we will
select our adversary.

At each step t, our adversary will identify a segment satisfying the conditions
of Lemma 9.6.1 (and other conditions as well.) The adversary will actually specify
a chain of segments St(1) ⊃ St(2) ⊃ · · · ⊃ St(d)1, where the parameter d will be
fixed (later) to be Θ(log(n)). (Note, that in general the first segment St(1) need not
equal {1, . . . ,m}.) The segment St(d) will satisfy the conditions of Lemma 9.6.1
and will be used as the selected suitable segment at step t.

We call this type of strategy for the adversary, where we close in on a suitable
segment by taking a chain of segments, a segment chain strategy.

It is natural that the segment chain selected at step t should relate to the
sequence selected at the previous step t−1 and the moves made by the algorithm.
Recall that Bt is the busy region at step t, which is determined by the moves made
by the algorithm in response to yt. Also recall that by Lemma 5.4.2 we assume
that the algorithm is lazy so that Bt is always a segment. Define the critical index
jt−1 after step t − 1 to be the smallest index j ∈ {1, . . . , d+ 1} for which Bt−1 is
not a subset of St−1(j). In particular, jt−1 = d + 1 if Bt−1 is a subset of St−1(d),
and j0 = 1. Our adversary will satisfy the following natural rule (which was also
satisfied by the adversary of Dietz et al.):

Conservative Selection Rule. For every t ≥ 2: The sequence St(1), . . . , St(d) is
chosen so that St(j) = St−1(j) for j < jt−1.

This rule puts no restriction on the selection of St(j) for j ≥ jt−1; in particular
the adversary can use any information about the present or past configurations.

Assuming the use of a segment chain strategy with conservative selection, we
now summarize the sequence of events that occur during step t of the game. Note
that the configuration (Yt−1, ft−1), the busy segment Bt−1, and the critical index
jt−1 were determined during step t− 1.

1Recall, we use subscript to denote step and we use (·) notation to denote a particular coor-
dinate of such a vector or sequence at that step.

109

• The adversary selects the sequence St(1) ⊃ · · · ⊃ St(d). (We will specify how
this is done below.) The selection will be done subject to the conservative
selection rule and will be done in a way that ensures that St(d) satisfies
the hypothesis of Lemma 9.6.1 (with respect to (Yt−1, ft−1)), and therefore
contains a suitable gap.

• The adversary chooses the longest gap in St(d) and lets yt be the approximate
midpoint. Yt is set to be Yt−1 ∪ {yt}.

• The algorithm selects the storage function ft for Yt.

• The choice of ft together with the previous storage function ft−1 determines
the busy segment Bt.

• The critical index jt is determined by Bt and St(1), . . . , St(d).

9.6.3 Specifying the segment chain

It remains to describe how the adversary selects the segments St(j) for j ≥ jt−1.
Our strategy is not hard to describe but it is not so easy to motivate the (seemingly
arbitrary) choices made. We’ll present it first with a minimum of discussion. Hope-
fully the discussion in Section 9.10.1 and the proofs of correctness will demystify
it.

Our strategy uses an auxiliary sequence of segments Tt(1), . . . , Tt(d) which is
interleaved with St(1), . . . , St(d):

Tt(1) ⊃ St(1) ⊃ Tt(2) ⊃ St(2) ⊃ · · · ⊃ Tt(d) ⊃ St(d).

Recall that jt−1 is the critical index after step t−1. For 1 ≤ j < jt−1, we satisfy
the conservative selection rule by setting Tt(j) = Tt−1(j) and St(j) = St−1(j).

The significant part of the specification consists of three parts:

• The choice of Tt(jt−1) for the critical index jt−1.

• For i ∈ {jt−1, . . . , d}, the choice of St(i) given Tt(i).

• For i ∈ {1 + jt−1, . . . , d}, the choice of Tt(i) given St(i− 1).

To specify these, we will need some definitions. For a segment U :

• middle(U) is the subsegment of U defined as follows: Break U into three
segments from left to right, L,M,R where |L| = |R| = b|U |/3c. middle(U)
is the segment M (which is roughly the middle third of U).

110

Let (Y, f) be an arbitrary configuration with associated density ρ. Let κ > 0.
For an arbitrary segment U :

• The quality of U with respect to (Y, f) is the real number φ(U) = ρ(U)1/κ|U |.

• densify(U) is the subsegment of V of U that maximizes φ(V) (breaking ties
arbitrarily).

• balance(U) is the subsegment V of U given by middle(densify(U)).

• we write ρt−1, φt−1, densifyt−1 and balancet−1 to be the functions based on
the configuration (Yt−1, ft−1)

Our adversary depends on three parameters: the length d of the segment chain
will be fixed to be Θ(log(n)) by (9.8) and the parameter κ used in the quality
function (which will be fixed to be Θ(1/ log(n)) in (9.7)) and the weight parameter
λ which appears implicitly because it determines the functions wt, ρt, and φt and
therefore also the functions densify and balance defined above. The parameter
λ is 1 in the case of large mingap and will be set to δ0/6 otherwise. We’ll explain
these choices later but for now we leave d, κ and λ as parameters.

The specification of adversary Adv(d, κ, λ)

Adv1 Specification of Tt(j) for the critical index jt−1:

Adv1.a If jt−1 = 1 then Tt(jt−1) is the segment of length between n/2 and
n of highest density (breaking ties by an arbitrary rule).

Adv1.b If jt−1 > 1 (and so necessarily t > 1) set

Tt(jt−1) = Tt−1(jt−1) ∪Bt−1.

Adv2 Specification of St(i) given Tt(i) for i > jt−1: St(i) = balancet−1(Tt(i)).

Adv3 Specification of Tt(i) given St(i− 1) for i > jt−1: Tt(i) = middle(St(i− 1)).

It is not clear that the above adversary is well-defined, because we need that the
final segment St(d) in each segment chain be suitable as defined in Section 9.6.1;
if it isn’t then the adversary is unable to proceed with inserting an item according
to the requirements. Indeed if d is chosen too large then the chain of segments
will eventually degenerate to a segment of length 1 which will just be repeated
until the chain ends. When we fix the parameters, one of the things we’ll have to
prove is that each of the segments St(d) is indeed suitable (which is formulated as
Property (P4) below).

111

Also, in our adversary we require that for all t and j, Tt(j) and St(j) are seg-
ments. This is not immediately apparent from the description of the adversary
(because of Adv1.b) but can be proved by induction on t and for fixed t by induc-
tion on j. The only case that requires some discussion is the definition of Tt(j)
when j is critical and j > 1. By induction, Tt−1(j) is a segment, and by laziness
of the algorithm Bt−1 is a segment that must intersect Tt−1(j), so their union is a
segment.

9.7 Important Properties of the Adversary

The rest of this chapter is devoted to proving that the above adversary, with
suitably chosen parameters, gives the bounds of Lemma 9.4.1. In this subsection
we state seven properties (P1) - (P7) that encapsulate what we need from our
adversary. In subsequent sections we’ll show that these properties imply a cost
lower bound, and that our adversary satisfies these properties.

The first three properties are fairly mild technical “boundary” conditions on
the sizes and densities of the segments appearing in a segment chain. We introduce
parameters parameters σ and δ∗ to represent these conditions.

(P1) For each segment chain the first segment in the chain (and therefore all
others) have size at most n/2.

(P2(σ)) For each segment chain, the final segment (and therefore all others) have
size at least σ. (The reader should think of σ as a function of n that grows
slowly, but not too slowly. Later, we’ll choose it to be n1/4, but the exponent
1/4 is fairly arbitrary.)

(P3(δ∗)) Every segment in any of the segment chains has density at least δ∗.
(Later we set δ∗ = δ02δ0−1 which is between δ0/2 and δ0.) In the illustrative
case in which δ0 < 1/2 the reader should think of δ∗ as cδ∗ for some constant
c around 1/2 where the constant is unimportant. (In the dense case that δ0

is close to 1, the desired lower bound of Θ(n log2 n/(1− δ0)) gets larger as δ0

gets closer to 1. In this case it is not enough to take the δ∗ to be a constant
fraction of δ0, instead it is roughly (δ0)2.)

The next property is crucial since without it the adversary is not well-defined.
However, it will be easy to satisfy.

(P4) For each t, St(d) has a suitable gap. In the case of large mingap we only need
|St(d)| ≥ 2 (which will follow from (P2(σ))), but for the case of small mingap,
we’ll need to make sure that St(d) satisfies the hypotheses of Lemma 9.6.1
(which will not be hard to do.)

112

The next simple property plays a significant role in the lower bound.

(P5) For each t and i ≥ 2, |St(i)| ≤ |St(i− 1)|/2. (Segment sizes decrease by at
least a factor of 2 along a segment chain.)

The next property is especially important to the argument. As discussed above,
when we choose the segment chain we would like that (among other properties)
each successive segment should have density at least that of the previous segment.
We can’t necessarily do this but it’s enough that the density not decrease by too
much. This is quantified by the following property, which depends on a density
degradation parameter α:

(P6(α)) ρt−1(St(1)) ≥ 1
2α
δ0 and for i ≥ 2, ρt−1(St(i)) ≥ 1

2α
ρt−1(St(i− 1)).

The value of α we’re able to achieve plays a crucial role in our lower bound.
The heart of the lower bound argument (Lemma 9.7.1) will give a lower bound
on χ (n,m|Y0) of roughly Ω(nd2/(αd + 1)). We will have d = Θ(log(n)) (it can’t
be larger because of (P5)) so this argument has the potential of giving a lower
bound of Ω(n log2 n) if we can make α small enough. The argument of Dietz et
al. [13] constructs the segment chain with α = O(1) which gives an Ω(n log(n))
lower bound; we’ll be able to achieve α = O(1/ log(n)) which will give the optimal
Ω(n log2 n) lower bound.

The final property (P7) is the most technical, and is crucial for the analysis. It
concerns the way that we’ll account for the cost of the algorithm, and describing
this property requires some additional terminology.

Each of the segment chains St(1), . . . , St(d) has length d. We say that the
segment St(j) is at level j. For each j ∈ {1, . . . , d}, we define Σ(j) ⊆ {1, . . . , n} to
be the set of steps t ∈ {1, . . . , n} such that Bt is not a subset of St(j). According
to the definition of the adversary, Σ(i) is therefore the set of steps t such that Si(t)
is not determined by the conservative selection rule, but rather is rebuilt. We use
the set Σ(j) to define a partition Π(j) of {1, . . . , n} into intervals where the first
interval starts at 1 and ends at the smallest element of Σ(j) and each successive
interval ends at the next smallest element of Σ(j)∪{n}. These intervals are called
the epochs at level j. We also define the partition Π(0) to be the trivial partition
consisting of the single epoch {1, . . . , n}, and Π(d + 1) to be the partition into n
singleton sets. We make a few observations:

• By the conservative selection rule, for each epoch E, all of the segments St(j)
are the same for all t ∈ E. We therefore define SE to be this unique segment.
For the epoch {1, . . . , n} at level 0 we define S{1,...,n} = {1, . . . ,m}, and for
the singleton epochs at level d+ 1, SE is not defined.

113

• The definition of Σ(j) implies that Σ(j+1) ⊆ Σ(j) and therefore the partition
of {1, . . . , n} into epochs at level j + 1 refines the partition into epochs at
level j.

Each epoch E is an interval {sE, . . . , cE} where sE is the start time of the
epoch and cE is the closing time. The closing times of the epochs at level j are
the elements of Σ(j) ∪ {n} and the start times are each 1 more than the closing
time of the previous epoch. We write Et(j) for the epoch at level j that contains
step t.

An epoch is said to be terminal if it contains n, so it is the final epoch at its
level. An epoch is non-terminal otherwise.

We now build a rooted tree, called the epoch tree whose nodes are the epochs
at all levels together with one leaf for each t ∈ {1, . . . , n}:

• The root is the level 0 epoch {1, . . . , n}.

• For an epoch at level j ≥ 1, its parent is the unique epoch at level j− 1 that
contains it.

Thus the tree has depth d + 1 and it has n leaves corresponding to singleton
subsets. We visualize the tree as ordered so the leaves are in order from left to
right.

Observe that for each t ∈ {1, . . . , n} the path from the root {1, . . . , n} to
the leaf {t} traverses the sequence Et(1), . . . Et(d) of epochs and this sequence
corresponds precisely to the sequence St(1), . . . , St(d) of segments selected by the
algorithm at step t.

The epoch tree will provide a convenient way to account for the cost of reloca-
tions done by a given algorithm. Fix a segment chain strategy and an algorithm.
Let χ denote the cost of the algorithm against that strategy.

We define a move to be a pair (y, t) where y is an item and t a step such that
the algorithm moves item y at step t. The cost χ incurred by the algorithm is the
total number of moves.

For accounting purposes, we assign each move (y, t) to the smallest epoch E
such that t ∈ E and ft−1(y) ∈ SE. In terms of the epoch tree, we travel from the
leaf t to the root and assign (y, t) to the first epoch encountered on the path for
which SE contains ft−1(y). (By definition (y, t) is not assigned to a leaf.) Thus if
(y, t) is assigned to epoch E at level i then ft−1(y) ∈ St(i) − St(i+ 1). Denoting
the cost of all moves assigned to E by qE we have:

χ =
∑
E

qE. (9.5)

We are now ready to state the final property of the adversary.

114

(P7) For any non-terminal epoch E with start time s we have qE ≥ 1
8
ws−1(SE),

that is, the total cost of moves assigned to E is at least a 1/8 fraction of the
weight of the associated segment SE at the start of the epoch.

We now formulate two lemmas concerning these properties. The first lemma
gives a lower bound on the cost incurred by any algorithm against a segment chain
strategy that satisfies the above properties, in terms of the parameters σ, α and
λ in the properties. This lemma encapsulates and extends the main accounting
argument of Dietz et al. [12, 21], which they used to prove an Ω(log2(n)) amortized
lower bound for the special case of smooth algorithms.

Lemma 9.7.1. (Properties imply lower bound) Let m,n, n0, δ0 and Y0 be as in
Lemma 9.4.1. Let σ ≥ 1 and α, λ be positive parameters. If a segment chain
strategy produces a segment chain with d levels satisfying (P1)-(P7) then the cost
incurred by the algorithm satisfies

χ (n,m|Y0) ≥ λδ∗nd2

128(αd+ λ
σ

+ 1− δ0)
. (9.6)

We next turn to the second lemma, Lemma 9.7.2, which shows that with suit-
able parameters our adversary satisfies (P1)-(P7). Before giving the specific pa-
rameter choices, we give some intuition for these choices. The choice of parameters
is directly motivated by the expression in the lower bound. We would like the nu-
merator to be large, while keeping the denominator small.

The main parameter in the numerator is the depth of the segment chains d.
Property (P5), which requires segment sizes to at least halve each time, and prop-
erty (P4) which requires that each St(d) be suitable, limit d to be O(log(n)). We
will indeed be able to choose d to be Θ(log(n)) (here and elsewhere in this overview
the Θ(·) may have an implicit dependence on δ0). The numerator also involves
λ and δ∗ which are both at most δ0 and we’ll pick them to be Ω(δ0). Thus the
numerator will just be Θ(n log2(n)) (where we again hide the dependence on δ0).

The denominator must be at least 1− δ0 and we’ll be able to achieve a bound
of Θ(1− δ0). To do this we’ll need that the parameter α which bounds the density
degradation along each chain by O((1− δ0)/d) so (ignoring the dependence on δ0)
we need α to be O(1

log(n)
). We’ll also need that λ/σ = O(1− δ0) but ensuring it is

a minor detail.
The density degradation parameter α is the crucial part of the denominator.

The parameter α is closely related to the input parameter κ of the adversary (which
determines the quality function). As we’ll see later in Lemma 9.11.3, α is in fact
O(κ). Since we want α to be O(1

log(n)
) we’ll want to choose κ to be O(1

log(n)
).

On the other hand, if we make κ too small then this has the effect of making
the quality function depend mostly on the density and very little on the size. This

115

can be bad because, as the adversary builds a segment chain the segment sizes may
shrink rapidly along the chain, which could force us to make the length d of the
segment chains smaller than Θ(log(n)) in order to be sure that the final segment
in each chain is suitable (as required by property (P4)).

Fortunately, as we’ll show, we will be able to choose κ (and hence also α) to be
Θ(1/ log(n)) and d to be Θ(log(n)). Thus we’ll get the Θ(n log2(n)) lower bound.

With all of this in mind, we now specify the parameters.

We choose the input parameters to our adversary as follows:

κ = 2 log(1/δ0)
1

log(n)
(9.7)

d =

⌊
1− δ0

8C6 log(1/δ0)
log(n)

⌋
, (9.8)

λ =
1

6
δ0. (9.9)

where

C6 = 60. (9.10)

We’ll also need a lower bound on n:

C0 = 21000C6 (9.11)

(Both C6 and C0 are chosen large enough to satisfy Lemma 9.11.3 below.)

The auxiliary parameters needed to specify properties (P2),(P3) and (P6) are
set as follows:

σ = n1/4 (segment size lower bound) (9.12)

δ∗ = δ02δ0−1 (segment density lower bound) (9.13)

α = 2C6κ = 4C6 log(1/δ0)
1

log(n)
(density degradation parameter)(9.14)

Here is the promised lemma:

Lemma 9.7.2. Let m,n, n0, Y0, δ0, µ0 be as in Lemma 9.4.1. Let the parameters
be set according to (9.7)-(9.14). Then Adv(d, κ, λ) satisfies (P1)-(P7).

116

9.8 Proof of Lemma 9.4.1

Before proving lemmas 9.7.2 and 9.7.1, we show how they combine to prove the
main lemma.

Let m,n, n0, Y0, δ0 be as in Lemma 9.4.1. Lemma 9.7.2 implies that, with the
given setting of parameters, our adversary satisfies (P1)-(P7).

Lemma 9.7.1 gives a lower bound on χ (n,m|Y0). The denominator of (9.6) is
Θ(αd + λ

σ
+ 1− δ0). The settings given by (9.14) and (9.8) give αd ≤ (1− δ0)/2.

The setting σ = n1/4 and λ ≤ 1 and the hypothesis of the main lemma that
δ0 ≤ 1− n−1/5 give λ

σ
≤ 1− δ0. So the denominator of (9.6) is Θ(1− δ0)

For the numerator, the setting of d gives d2 = Θ(log2(n))λδ∗(1−δ0)2/ log2(1/δ0).
For large mingap λ = 1 and the fraction simplifies to:

χ = Θ

(
n log2(n)

δ0(1− δ0)

log2(1/δ0)

)
,

while for small mingap λ > δ0
2e

,

χ = Θ

(
n log2(n)

δ0
2(1− δ0)

log2(1/δ0)

)
,

as required to prove Lemma 9.7.1.
It remains to prove Lemmas 9.7.1 and 9.7.2. Each of these lemmas is proved in

its own section, and the two sections are completely independent so can be read
in either order.

9.9 Proof of Lemma 9.7.1

The proof that the properties give a good lower bound is a careful accounting
argument that is a reworking of the idea used in [12, 21] to obtain an Ω(n log2(n))
bound for smooth algorithms.

9.9.1 Some preliminaries and an overview

For simplicity we write χ for χ (n,m|Y0). By (9.5), χ ≥
∑

E qE. The critical
property (P7) says that, for E non-terminal, qE is bounded below by 1

8
of the

weight of the associated segment SE at the beginning of the epoch. Using this
together with the lower bound on the density of any segment from (P3(δ∗)) gives:

qE ≥ 1

8
wsE−1(SE) ≥ δ∗

8
|SE|.

Letting N be the set of non-terminal epochs at level between 1 and d, we have:

117

χ ≥
∑
E∈N

qE ≥
δ∗

8

∑
E∈N

|SE|. (9.15)

So we are reduced to proving a lower bound on
∑

E∈N |SE|. To this end we start
with two easy observations.

Proposition 9.9.1.

1. For any epoch E, |E| ≤ |SE|.

2. For each level i ∈ {1, . . . , d} the sum of the lengths of all non-terminal epochs
at level i is at least n/2.

The first observation holds because during epoch E, |E| new items are stored
within the segment |SE|. The second holds since the sum of the lengths of all
epochs at level i is n and by (P1) the terminal epoch has length at most n/2.

Combining these observations with (9.15),

χ ≥ δ∗

8

∑
E∈N

|SE| ≥
δ∗

8

∑
E∈N

|E| ≥ δ∗nd

16
.

This is a non-trivial lower bound, but we want a lower bound of Ω(nd2). To
improve the bound from Ω(nd) to Ω(nd2) we try to show that the bound |SE| ≥ |E|
used above can typically be improved to |SE| = Ω(|E|d). This is not universally
true for all epochs, but the following weaker statement will suffice: for a constant
fraction of steps t, |SE| = Ω(|E|d) holds for a constant fraction of the epochs
containing t. This would follow if we could show that for a constant fraction of
steps t,

∑
E:t∈E

|E|
|SE |

= O(1).
The following proposition shows that something like this holds if we replace

|E| in the numerator by a related quantity. For epoch E at level at least 1, let
π(E) denote the parent of epoch E in the tree, which is the epoch containing E
whose level is one less than that of E. Let:

∆E = sE − sπ(E),

which is the time from the start of π(E) until the start of E.

Proposition 9.9.2. For any time t,∑
E 6={1,...,n}:t∈E

∆E

|Sπ(E)|
≤ 1

λ
(1− δ0 + dα).

118

Proof. For i ∈ {0, . . . , d} we make the following definitions:

• E(i) denotes the epoch at level i containing t.

• s(i) is the start time of E(i). Observe that s(0) = 1 ≤ s(1) ≤ · · · ≤
s(d+ 1) = t.

• S(i) is the segment associated E(i).

• ρ(i) = ρs(i)−1(S(i)), which is the density of the segment S(i) just prior to
the start of epoch E(i). Note that ρ(0) = ρ0{1, . . . , n} = δ0. This definition
doesn’t work for ρ(d + 1) (since there is no segment S(d+ 1)) so we define
ρ(d+ 1) = 1 for convenience.

• ∆(i) = ∆E(i) which is equal to s(i)− s(i− 1).

For any i ∈ {1, . . . , d}, the step interval {s(i− 1), . . . , s(i)− 1} has size ∆(i)
and is a subset of E(i− 1). During this interval of steps all inserted items are
placed in S(i− 1) and no item leaves S(i− 1). Hence the weight of S(i− 1)
increases by λ∆(i) and so:

ρs(i)−1(S(i− 1))− ρ(i− 1) = ρs(i)−1(S(i− 1))− ρs(i−1)−1(S(i− 1)) = λ
∆(i)

|S(i− 1)|
.

We also have:

ρ(i) ≥ ρs(i)−1(S(i− 1))2−α ≥ ρs(i)−1(S(i− 1))− α.
For i ≤ d the first inequality holds by property (P6(α)) (which bounds the rate at
which density degrades along a segment chain) and for i = d+ 1 it holds from the
choice we made that ρ(d + 1) = 1. The second inequality holds because ρ(i) and
α are in {0, . . . , 1}.

Using the second inequality with the first and rearranging we get:

∆(i)

|S(i− 1)|
≤ 1

λ
(ρ(i)− ρ(i− 1) + α) .

Summing this inequality for each E(i), the sum on the right telescopes to give:∑
E 6={1,...,n}:t∈E

∆E

|Sπ(E)|
≤ 1

λ
(ρ(d+ 1)− ρ(0) + dα) ≤ 1

λ
(1− δ0 + dα),

as required.

Intuitively, this proposition is useful because we expect that for a “typical”
epoch E, ∆E = Ω(|π(E)|), i.e. the number of steps from the start of π(E) to the
start of E is typically a constant fraction of the length of |π(E)|. The technical
work done in the proof makes this intuition precise.

119

9.9.2 The proof

Following the discussion of the previous subsection, we return to (9.15) and try to
show that

∑
E∈N |SE| is a Θ(d) factor larger than W =

∑
E∈H |E|. To facilitate

this comparison we define β(E) = |E|/W . Using the arithmetic-harmonic mean
inequality (which says that if X is a positive valued random variable then E[X] ≥
1/E[1/X]) we get:

∑
E∈N

|SE| = W
∑
E∈N

β(E)
|SE|
|E|

=
W∑

E∈N β(E) |E||SE |
=

W 2∑
E∈N

|E|2
|SE |

≥ n2d2

4
∑

E∈N
|E|2
|SE |

.

If we can show that the denominator is O(n) (where the big O does not depend
on d) then we’ll get the desired lower bound. This is indeed true, and the conclusion
of the lemma follows immediately by combining the previous inequality with (9.15)
and the following lemma:

Lemma 9.9.3. ∑
E∈N

|E|2

|SE|
≤ 4n

λ

(
λ

σ
+ 1− δ0 + dα

)
.

The reader should take note that we have switched from proving a lower bound
on a sum to proving an upper bound on a related sum.

Proof. We prove the upper bound with the sum extended to the set E of all epochs
at levels from 1 to d (not just non-terminal epochs).

We will prove the bound by rewriting the sum using some elementary account-
ing tricks. Here’s the first one. Recall that for a positive integer k, k2 is the sum
of the first k odd numbers. Thus, letting sE be the start time of epoch E we can
write:

|E|2 =
∑
t∈E

1 + 2(t− sE).

We therefore have:

∑
E∈E

|E|2

|SE|
=

n∑
t=1

∑
E∈E:t∈E

1 + 2(t− sE)

|SE|
. (9.16)

We hold t fixed, and bound the inner sum (and then multiply it by n). Let
E(t) be the set of epochs at level 1 to d containing t. Let H(t) be the epochs at
level 1 to d+ 1 containing t (i.e. including the leaf {t}).

120

Recalling the definition of ∆F for an epoch F from the previous subsection, we
have that t−sE =

∑
F∈H(t):F⊂E ∆F , where F ⊂ E is strict containment. Therefore:

∑
E∈E:t∈E

1 + 2(t− sE)

|SE|
=

∑
E∈E(t)

1

|SE|
+ 2

∑
E∈E(t)

∑
F∈H(t):F⊂E

∆F

|SE|

=
∑
E∈E(t)

1

|SE|
+ 2

∑
F∈H(t)

∆F

∑
E∈E(t):F⊂E

1

|SE|
(9.17)

Now we note that property (P5) (that the segment sizes decrease by at least a
factor of 2 down the epoch tree) implies that for any epoch D ∈ E :∑

E:D⊂E

1

|SE|
≤ 2

|Sπ(D)|
≤ 1

|SD|
. (9.18)

We can use this to bound the first sum in (9.17) by taking D to be the epoch
at level d. By property (P2(σ)), |SD| ≥ σ. For the second sum in (9.17) we take
D to be F and use the second inequality in (9.18) to get:

∑
E∈E:t∈E

1 + 2(t− sE)

|SE|
≤ 2

σ
+ 4

 ∑
F∈H(t)

∆F

|Sπ(F)|


We can now apply Proposition 9.9.2 to obtain

∑
E∈E:t∈E

1 + 2(t− sE)

|SE|
≤ 4

(
1

σ
+

1− δ0 + dα)

λ

)
=

4

λ

(
λ

σ
+ 1− δ0 + dα

)
.

Summing over all t ∈ [n] and using (9.16) gives the desired bound.

This completes the proof of Lemma 9.7.1.

9.10 Proof of Lemma 9.7.2

In this final section we show that the given strategy satisfies properties (P1)-
(P7). We start with a detailed informal overview of the ideas of the adversary
construction.

121

9.10.1 Motivating our adversary strategy

Our adversary has a reasonably short description, but the specific choices made in
the definition may seem arbitrary:

• Why do we introduce the auxiliary sets Tt(i)?

• Why do we choose the particular quality function?

• If i > j then it follows that St(i) = middle(densifyt−1(middle(St(i− 1))))
from the above. Why do we need the two applications of middle?

These issues were introduced at a high level in Section 9.2. Here we consider
them again in more technical detail, and show how we arrived at the specific
choices. The proof in the later subsections can in principle be read without reading
this section, but the technicalities involved in the proof hide the main ideas, which
we discuss in this subsection. To simplify the discussion in this section we restrict
to the case of large initial mingap. For this case the weight of a segment is the
number of items, and the density is the fraction of occupied locations, and a
segment is suitable (as defined earlier) if and only if there are at least two items
stored in it.

As remarked following the statement of Lemma 9.7.1, when we apply the lemma
to get a lower bound of Ω(n log2(n)), we want the depth of the chain to be d =
Θ(log(n)), and the density degradation parameter α = O(1/ log(n)). The reader
should keep these parameters in mind.

9.10.2 Satisfying (P1)-(P6)

Achieving all of the desired properties except (P7) with the desired parameter
values is straightforward. In discussing these properties, we’ll reason inductively.
We start by proving the properties for the first segment chain. Then for step t > 1
we prove the properties for the tth segment chain assuming that they hold for the
t − 1st chain. When considering the tth chain we reason about the segments by
increasing level. A natural attempt for selecting the first step is to take S1(1) to
be the segment of size bn/2c having highest density, and for i ≥ 1, define S1(i)
to be the subsegment of S1(i− 1) of size b|S1(i− 1)|/2c having highest density.
This does not quite work because it might not satisfy (P6(α)); for a segment S, all
subintervals of some fixed size k might have density less than, say 0.9ρ(S). This
difficulty disappears if we relax the requirement that S have size exactly k: it is
easy to show that for a segment S of size at least 8 and k ≤ |S|/2, there must be
a subsegment of size between k/2 and k having density at least that of S.

122

So for a given configuration and segment S consider the subsegment of size
between |S|/4 and |S|/2 having maximum density (breaking ties arbitrarily). We’ll
refer to this as the densest large subsegment of S.

This suggests we choose S1(1) to be the densest large subsegment of {1, . . . , n}
and for i ≥ 2 choose S1(i) to be the densest large subsegment of S1(i− 1). The
resulting sequence has nondecreasing density (so certainly satisfies (P3(δ∗) and
(P6(α))) and as the segment sizes decrease by at most a factor of 4, we can
continue it for Θ(log(n)) levels and have conditions (P1)-(P6) hold for the first
segment chain.

Next let’s consider the case t > 1. Assume that we’ve already selected the
segment chain for step t− 1 so that conditions (P1)-(P6) hold. We want to build
the chain for step t so that these continue to hold. Let jt−1 be the critical index
for step t− 1, as defined earlier, i.e., the first level for which Bt−1 is not a subset
of St−1(j) (or d + 1 if there is no such level). For i < jt−1 the segment chain
restriction requires St(i) = St−1(i) and it is easy to check that properties (P1)-
(P6) are preserved, because after the move by the algorithm the set of items
stored in St−1(i) changes only by the addition of the newly inserted item yt−1. For
levels i ≥ jt−1, it is not in general sufficient to take St(i) = St−1(i) because the
algorithm may have moved many items out of St−1(i) and so the density restrictions
(P3(δ∗)) and (P6(α)) need not hold. Instead, we rebuild the segments St(i) for
i ≥ jt−1, iteratively taking St(i) to be the densest large subsegment of St(i− 1).
This adversary satisfies (P1)-(P6). We will refer to this adversary as the naive
adversary.

9.10.3 Requiring left and right buffers

We now turn our attention to condition (P7). Let E be an epoch at level i with
associated segment S and start time s, and let Z be the set of items stored in
S immediately prior to step s. We want to ensure that the number of moves
charged to E is a constant fraction of |Z|. Consider the set Z ′ of items of Z that
move at least once during E and for each y ∈ Z ′, let ty be the first step during
the epoch that it moves. Under our convention for charging moves to epochs, we
charge the move (y, ty) to E provided that at step ty, y is not stored within the
successor interval St(i+ 1). So qE is at least the number of items y ∈ Z that
move during epoch E such that the first step it is moved it is not in the successor
interval of S. To ensure that this is large, at the start time s we split S into three
segments L,M,R where L is on the left and R is on the right. These are referred
to, respectively, as the left buffer and right buffer of S. Let Y L, Y M and Y R be
the sets of items stored in each of these sets. We want our strategy to satisfy two
things:

123

1. L,M,R are chosen so that Y L and Y R each contain a constant fraction of
items from Z.

2. At every step t ∈ E, we restrict the choice of St(i+ 1) so that it does not
contain any items from Y L ∪ Y R that have not yet moved during epoch
E. More precisely, let BE,t−1 be the union of the busy segments from the
beginning of E until step t − 1; this is the region where the algorithm has
shifted items during epoch E. Let Mt = M ∪ BE,t−1. We require that
St(i+ 1) ⊆ Mt. In particular, when t is the start time of E we require
St(i+ 1) ⊆M .

If the selection strategy chooses St(i+ 1) for each t ∈ E to satisfy these two
conditions, then (P7) holds for epoch E because the second condition implies that
qE is at least the number of items y ∈ Y L∪Y R that move at least once during the
epoch and by the (assumed) laziness of the algorithm, during the epoch either all
of the items in Y L move, or all of the items in Y R move.

9.10.4 Failure of the naive adversary

Unfortunately, the naive adversary does not meet these two conditions. We now
discuss why, and modify the strategy so that it satisfies the above two conditions
(and therefore (P7)) while preserving (P1)-(P6). To focus attention on the two
conditions, we fix an epoch E at level i with start time s. The segment S associated
to this epoch is equal to St(i) for all t ∈ E. The epoch E is divided into one or
more epochs at level i + 1. Let H be the set of start times for level i + 1 epochs
during E. The two conditions restrict the choice of St(i+ 1) for each t ∈ H.

For each step t ∈ H, the naive adversary selects St(i+ 1) to be the densest
large subsegment. Condition 2 above requires that St(i+ 1) ⊆ Mt (and not just
St(i+ 1) ⊆ S) so it is natural to modify the definition of St(i+ 1) to be the
subsegment of Mt (rather than the subsegment of S) of maximum density and size
between |Mt|/4 and |Mt|/2.

The modified algorithm will still satisfy (P1), (P2(σ)) and (P5). However,
where before we could be sure that the density of St(i+ 1) is at least the density
of S, now we only have that it is at least the density of Mt, but the density of Mt

might be much lower than that of S. Thus conditions (P3(δ∗)), (P4) and (P6(α))
are no longer guaranteed.

9.10.5 Enforcing κ-lower balance

To solve this problem we’ll insist that every segment chosen to start a new epoch
satisfy a condition that will ensure that the density of Mt is either greater than

124

that of S or only slightly less. More precisely, we introduce a property of segments
called κ-lower balance, where κ > 0 is a parameter that we will eventually take
to be Θ(1/ log(n)). We will say S is κ-lower balanced with respect to a given
configuration if every subsegment of size at least |S|/4 has density at least the
density of S times

(
1
4

)κ
, which for small κ is (1 − O(κ)). If we knew that each

selected segment satisfied this additional condition then for every step t ∈ H, Mt

(which has size at least |S|/4) will have density at least 1−O(κ) times that of S.
This will be enough to get (P1)-(P7).

So we modify the construction of the segments Sj(u) once again so that when-
ever a new epoch is started, the segment chosen for that epoch is κ-lower balanced.
This is done as follows. Fix an epoch E at level i with start time s and associated
segment S as before, and assume inductively that S is κ-lower balanced at the be-
ginning of the epoch. We split S into three parts L,M,R where M is the middle
third of S. By κ-lower balance we know that L,M ,R all have density at least

(
1
4

)κ
times the density of S, and consequently L and R each contain about 1/3 of the
items stored in S.

We consider a step t ∈ E that starts a new i + 1 epoch (this includes the
case t = s) and describe how we’ll select St(i+ 1). As previously defined, let
Mt = M ∪ BE,t−1. By κ-lower balance, the density of Mt at the start of E is at
least 1 − O(κ) times the density of S. This is still true at step t since both S
and Mt contain the same items they had at the beginning of the epoch plus the
items added during the epoch. We need to select St(i+ 1) ⊆ Mt that is κ-lower
balanced. If Mt were κ-lower balanced we could just take St(i+ 1) to be M , but
in general Mt need not be κ-lower balanced, so we’ll need to search for a large
κ-lower balanced subsegment.

It turns out to be easier to find a subsegment with a closely related property
called κ-upper balance. S is κ-upper balanced if every subsegment of size at least
|S|/4 has density at most the density of S times 4κ. While κ-upper balance does
not imply κ-lower balance, it is not hard to show that if U is κ/24-upper balanced
then the middle third of U is κ-lower balanced. So we’ll find a large subset of Mt

that is κ/24-upper balanced and has density at least that of Mt and then take
St(i+ 1) to be the middle third.

The following simple iterative process can be used to find a κ/24-upper bal-
anced subset of Mt. Initialize the set A to be Mt and perform the following
iteration: If A is κ/24-upper balanced then stop. Otherwise, since κ/24-upper
balance is violated there is a subset A′ of size at least |A|/4 that has density more
than 4κ times that of A. Now replace A by A′ and repeat. Since during each
iteration the density of A increases by a factor at least 4κ at each step this must
terminate.

This gives a well defined process for selecting the segment St(i+ 1) at the start

125

of a level i epoch: Start from Mt, apply the iterative process until it terminates
and then take the middle third.

9.10.6 Controlling segment lengths

There is one remaining issue: the iterative process must terminate but might re-
quire many iterations, and |St(i)| may be much smaller than |St(i− 1)|. Therefore
it is no longer immediate that we can continue this for Ω(log(n)) levels (while
ensuring that the final segment has at least 2 items). Nevertheless, we can indeed
continue this for Ω(log(n)) levels. In the troublesome case that |St(i)| is much
smaller than |St(i− 1)| (because the selection of St(i) took many iterations), the
density of St(i) will be significantly higher than that of St(i− 1). Since the density
can not rise above 1, this can be used to show that the segment sizes can’t shrink
too quickly. A convenient way to simultaneously account for size and density is
to measure the quality of a segment by a function that combines both the densi-
ty and size. A natural form for such a function is φ(U) = ρ(U)α|U |β. It’s easy
to check that if β/α ≥ κ then this function increases during each of the above
iterations. So we fix α = 1 and β = κ, and for this choice of φ its not hard to
show that in passing from St(i) to St(i+ 1), the function φ decreases by at most
a factor (1 − O(κ)). This implies that we can take the depth to be Θ(1/κ). For
κ = Θ(1/ log(n)) this gives what we want.

The introduction of the quality function φ allows for a slight simplification of
the selection of St(i). The proof that φ is nondecreasing in each iteration actually
shows that if U is a segment whose φ value is at least that of any subsegment of
U then U is κ-upper balanced. So to obtain a κ-upper balanced subset of Mt we
can (and do) replace the iterative process by the function densify of the previous
section which selects the subset of maximum φ value.

To summarize, for the start time s of E, having chosen S = Ss(i− 1) the
selection of St(i) involves three steps: first we partition S into L,M,R and restrict
to the middle third M of S (this corresponds to the set Ts(i) in the definition
of the adversary). The process of constructing St(i+ 1) for t ∈ E with t > s is
similar except we take Tt(i) to be Mt instead of M .

9.11 The Proof that the Adversary Satisfies (P1)-(P7)

The remainder of this section gives the proof of Lemma 9.7.2 that our adversary
with the parameters chosen according to (9.10)-(9.14) satisfies (P1)-(P7).

We start by noting that property (P1) and (P5) which require that the initial
segment of every chain have size at most n/2 and the segments decrease in size by

126

at least a factor of 2 are obvious from the definition of the adversary. It remains
to verify the remaining five properties.

9.11.1 Properties of balance and φ

Property (P6(α)) asserts that in each selected segment chain, the density of a
selected segment can not be much smaller than its predecessor segment. The
proof sketch of the previous subsection explained qualitatively how the function
balance accomplishes this; here we provide the technical details. This will also be
needed to establish (P3(δ∗)) and (P2(σ)) which give lower bounds on the density
and weight of any segment occurring in any chain, and (P4) which establishes that
there is always a suitable gap.

Let us fix a configuration (Y, f) and let ρ be the associated density function.
Let κ > 0. We start by formally defining κ-upper balance and κ-lower balance
with respect to the configuration (Y, f), which were mentioned in the previous
subsection.

• S is κ-upper balanced (with respect to ρ) if every subsegment of size at
least |S|/4 has density at most ρ(S)4κ. item S is κ-lower balanced if every
subsegment of size at least |S|/4 has density at least ρ(S)(1/4)κ.

Recall the following definitions:

• The quality of U with respect to (Y, f) is the real number φ(U) = ρ(U)1/κ|U |.

• densify(U) is the subsegment of V of U that maximizes φ(V) (breaking ties
arbitrarily).

• balance(U) is the subsegment V of U given by middle(densify(U)).

Proposition 9.11.1. Let (Y, f) be an arbitrary configuration and let ρ be the
associated density function. Let T be a segment and D = densify(T).

1. φ(T) ≤ |T |, i.e. the quality of a segment is at most its length. [This holds
since ρ(T) ≤ 1.]

2. ρ(D) ≥ ρ(T), i.e. applying densify to T produces a segment that is at least
as dense.

3. D is κ-upper balanced. [Proof: If U is a subsegment of D of length at least
|D|/4, the choice of D implies φ(U) ≤ φ(D), which implies φ(U)κ ≤ φ(D)κ

which implies ρ(U)(1
4
)κ ≤ ρ(D), which is the condition of κ-upper balance.]

127

Lemma 9.11.2. Fix a configuration (Y, f). Let T be an arbitrary segment, let
D = densify(T) and S = balance(T) = middle(D). Assume that:

|S| ≥ 4 AND κ ≤ 1/24 ln(4).

Then:

1. For any subsegment U of S having size at least |S|/4, ρ(U)/ρ(D) ≥ (1
4
)24κ.

2. S is 25κ-lower balanced with respect to ρ.

3. φ(S)/φ(T) ≥ 1
3
(1

4
)24.

Proof. We first show that parts 2 and 3 follow easily from part 1. For part 2, let
U be a subsegment of S of size at least |S|/4. We have

ρ(U)

ρ(S)
=
ρ(U)

ρ(D)

ρ(D)

ρ(S)
≥
(

1

4

)24κ

·
(

1

4

)κ
=

(
1

4

)25κ

,

where the inequality uses part 1 and the fact that D is κ-upper balanced (by
Proposition 9.11.1) and that |S| ≥ |D|/4.

For part 3, note that

φ(S)

φ(T)
≥ φ(S)

φ(D)
=
|S|
|D|

(
ρ(S)

ρ(D)

)1/κ

≥ 1

3

(
1

4

)24

,

by applying part 1 with U = S.
It remains to prove the first part. From Proposition 9.11.1, D is κ-upper

balanced. D−U consists of 2 segments L (on the left) and R (on the right). The
κ-upper balance of D implies that ρ(L) and ρ(R) can’t be much higher high than
ρ(D), and we’ll show that this implies that the density of U can’t be much lower
lower ρ(D). We have:

|D|ρ(D) = w(D) = w(L) + w(R) + w(U) = |L|ρ(L) + |R|ρ(R) + |U |ρ(U),

which implies:
ρ(U)

ρ(D)
=

1

|U |

(
|D| − |L| ρ(L)

ρ(D)
− |R|ρ(R)

ρ(D)

)
.

Since |S| ≥ 4 and S = middle(D) it follows that |D| ≥ 8 and |S| ≤ |D|/2.
Since U ⊆ S = middle(D), we have |L|, |R| ≥ |D|/4 and since D is κ-upper
balanced, it follows that ρ(L)/ρ(D) and ρ(R)/ρ(D) are each at most 4κ. So:

128

ρ(U)

ρ(D)
≥ 1

|U |
(|D| − (|L|+ |R|)4κ)

≥ 1

|U |
(|D|4−κ − |L| − |R|)

=
1

|U |
(|D|4−κ − |D|+ |U |)

=
1

|U |
(|U | − |D|(1− e− ln(4)κ))

≥
(

1− |D|
|U |

ln(4)κ)

)
≥ (1− 12 ln(4)κ) ≥

(
1

4

)24κ

,

where the final inequality uses the hypothesis that κ ≤ 1/(24 ln(4)) and the in-
equality (1− x) ≥ e−2x for x ≤ 1/2.

9.11.2 Some technical inequalities involving the parameters

Our aim is to establish that the adversary satisfies (P1)-(P7) with the parameter
choices of Equations (9.7)-(9.14).

We complete the proof in the next two subsections. The main part of the ar-
gument is an induction which provides a lower bound on the density and quality
of all of the segments St(i) and Tt(i) produced by the adversary. Obviously the
selected values of the parameters will play a role, and this role shows up as certain
arithmetic inequalities that are required for the argument. Each of these inequal-
ities can be verified by a routine calculation by plugging in the specific values of
the parameters.

In preparation for this, we now collect all of the technical inequalities that are
needed for the coming argument. We mention the role each inequality plays in
the argument and highlight the most important ones. This section is optional for
the reader; the reader can go directly to the next section and when encountering
one of these needed inequalities in the next section, the reader can either do the
(usually easy) verification himself or take our word for it.

Readers who choose to read this section may find the brief comments after each
one hard to follow completely, because they refer forward to specific details in the
subsequent proofs. The hope is that giving the reader an impression of the role
that these technical properties play will facilitate reading the proof.

Here are the hypotheses carried over from Lemma 9.4.1:

129

(A1) n ≥ C0

(A2) δ0 ∈ (log(n))−2, 1− n−1/5).

The following properties of the chosen parameters can be deduced from (A1)-
(A2) and the definitions of the parameters (9.7)-(9.14).

(R1) δ∗σ ≥ 2. This is a technical condition that ensures that St(d) satisfies the
hypotheses of Lemma 9.6.1 and thus has a suitable gap. It holds with a lot
of room to spare.

(R2) σ ≥ 4. For (P2), every segment St(i) has size at least 4. This is a minor
technical hypothesis of Lemma 9.11.3, which is needed so that we can apply
Lemma 9.11.2. It holds trivially.

(R3) (1/δ0)1/κ ≤
√
n/2. This is a significant inequality. In the basis of our induc-

tion, we want to show that (at the beginning of step t) the chosen segment
Tt(1) has quality value at least

√
n. This quality function value is easily

bounded above by n
2
δ0

1/κ. Since we want this to be at least
√
n this restricts

κ to be large enough. On the other hand we want κ to be O(1/ log(n)) so
that the density degradation parameter α is that small. Fortunately these
two restrictions can both be satisfied by the selected value of κ.

(R4) σ ≤ 2−2C6d
√
n. We want every segment to have length at least σ. The

length of a segment is bounded below (at each step) by the quality function
value, and the analysis will give us a lower bound on that. Our induction
argument will lead to equations (9.29) and (9.27) which give lower bounds
on the quality function value of all of the selected segments, and these lower
bounds are all at least 2−2C6d

√
n. By adjusting the multiplicative constant

for d we can make this as close to
√
n as we want. We arbitrarily chose σ to

be n1/4 and adjusted d appropriately.

(R5) 2−2dC6κδ0 ≥ δ∗. For (P3(δ∗)) we need that every segment in every segment
chain has density at least δ∗. This will follow immediately from the present
inequality, and (9.28) which says that every segment in a segment chain has
density at least 2−2dC6κδ0.

(R6) κ ≤ 1
24 ln(4)

and κ ≤ 1/50. These are minor (and easily verifiable) technical
upper bounds needed, respectively, for the hypothesis of Lemma 9.11.2, and
the end of the proof of (P7)).

(R7) α = 2C6κ. This is a restatement of the definition (9.14) of α, which relates it
to the adversary parameter κ. We prove (9.22) and (9.23) which give a lower
bound on the ratio of densities of successive St(i) in each chain as 2−2C6κ,

130

so setting α = 2C6κ gives us property Property (P6(α)) which requires that
the ratio of densities of successive subsegments is at most 2−α.

9.11.3 The behavior of φ and ρ along a segment chain

The next step in establishing the remaining properties is to prove a lemma that
for each step t, gives a lower bound on ρt−1 and φt−1 of the first segment St(1) and
also shows that as we move from a segment to its successor, ρt−1 and φt−1 can’t
decrease by much.

Lemma 9.11.3. Let C6 and C0 be as in (9.10) and (9.11). Suppose that the
parameters d,κ,α,σ and δ∗ satisfy (R1)-(R7) and that n ≥ C0. Let St(i) and Tt(i)
be the segments chosen by the adversary and assume that all of them have size at
least 4. For each t ∈ {1, . . . , n} we have:

ρt−1(Tt(1)) ≥ δ0, (9.19)

φt−1(Tt(1)) ≥
√
n, (9.20)

and for i ∈ {1, . . . , d} we have:

if t starts an i-epoch then St(i) is 25κ lower-balanced with

respect to ρt−1.
(9.21)

ρt−1(St(i))

ρt−1(Tt(i))
≥ 2−C6κ = 2−α/2. (9.22)

ρt−1(Tt(i+ 1))

ρt−1(St(i))
≥ 2−C6κ = 2−α/2 if i ≤ d− 1. (9.23)

φt−1(St(i))

φt−1(Tt(i))
≥ 2−C6 . (9.24)

φt−1(Tt(i+ 1))

φt−1(St(i))
≥ 2−C6 if i ≤ d− 1. (9.25)

Proof. We fix an epoch E and prove the result for all t ∈ E. Let i be the level of
the epoch. We divide into cases depending on whether or not t is the start time sE.
Case 1. t = sE. For (9.19) and (9.20), recall that Tt(1) is chosen to have highest
density among segments of length between n/2 and n. Since the m locations of
the array can be partitioned into segments of size between n/2 and n, and one of
those must have density at least the density of the entire array, we conclude that
ρt−1(Tt(1)) ≥ δ0. From the definition of φt−1, φt−1(Tt(1)) ≥ (n/2)δ0

1/κ, which is at
least

√
n (see (R3)).

131

For the proofs of the remaining parts in this case, we apply Lemma 9.11.2 with
T = Tt(i) and S = St(i), in fact that lemma was designed The hypotheses of Lem-
ma 9.11.2 require that κ be smaller than 24 ln(4) which is (R6) and that |St(i)| ≥ 4,
which is a hypothesis of the present lemma. Since St(i) = balance(Tt(i)), part 2
of Lemma 9.11.2 implies that St(i) is 25κ-lower balanced. Inequality (9.22) follows
from the first part of Lemma 9.11.2 with U = S, using C6 = 60 ≥ 48. Inequality
(9.25) follows from the third part of Lemma 9.11.2 with U = S. Since St(i) is
25κ-lower balanced and |Tt(i+ 1)| ≥ |St(i)|/4 we have (9.23). For (9.25) we use
the definition of φt−1, together with (9.23) and the fact that |Tt(i+ 1)| ≥ |St(i)|/4.

Case 2. t > sE. We may assume by the first case that the four inequalities
hold with t replaced by sE. We will show that they continue to hold throughout
the epoch E. We will repeatedly use the following easy fact:

Proposition 9.11.4. Let S ⊆ S ′ be segments and s < t be steps. Suppose that
for all steps r ∈ {s, . . . , t− 1}, the busy segment Br is a subset of S. Then
ρr(S), φr(S), ρr(S)/ρr(S

′) and φr(S)/φr(S
′) are all nondecreasing as a function

of r ∈ {s, . . . , t− 1}

Proof. This follows from: At each step in {s, . . . , t− 1}, both wr(S) and wr(S
′)

increase by λ and wr(S) ≤ wr(S
′).

Let s < t be the start time of the epoch. Note that during epoch E, the
sets St(i) = Ss(i) and Tt(i) = Ts(i). Therefore (9.19) and (9.20) and (9.22)
and (9.24) follow from the corresponding inequalities for step s together with
Proposition 9.11.4.

For (9.23) and (9.25), we cannot apply Proposition 9.11.4 directly because,
while St(i) = Ss(i), it may not be true that Tt(i+ 1) = Ts(i+ 1) because there
may have been one or more new i + 1-epochs started between s and t and so
Tu(i+ 1) may change during the epoch. Note that since the step interval {s, . . . , t}
is a subinterval of the epoch E, at any time u ∈ {s, . . . , t} that Tu(i+ 1) changes
i + 1 must be the critical index ju−1. We will need to make careful use of the
adversary construction (Adv1.b) of the T -set at the critical index.

Proposition 9.11.5. Let i ∈ {1, . . . , d} be a level and t a step that belongs to the
level i epoch E, whose start time is s. Then Tt(i+ 1) = Ts(i+ 1) ∪

⋃
uBu where

u ranges over all steps u ∈ {s, . . . , t− 1}.

Proof. We prove this by induction on t ≥ s; it holds trivially for t = s. Assume
t > s; by induction it suffices to show that Tt(i+ 1) = Tt−1(i+ 1) ∪ Bt−1. If
the critical index jt−1 is greater than i + 1 then this is trivial since then Bt−1 ⊆
St−1(i+ 1) ⊆ Tt−1(i+ 1). Otherwise jt−1 = i+1 and the conclusion follows directly
from the definition of the adversary.

132

We are trying to show that the density of Tt(i+ 1) can not be much smaller than
the density of St(i+ 1). According to Proposition 9.11.5, the interval Tt(i+ 1) is
equal to Ts(i+ 1) combined with some busy sets. These busy sets are determined
by the algorithms behavior, so it is conceivable that the algorithm might be able
to choose the busy sets cleverly so as to drive the density of Tt(i+ 1) down signif-
icantly. We’ll show this can’t happen using the first part of Lemma 9.11.2. What
we’ll do is consider the density of the segment Tt(i+ 1) with respect to the density
function ρs−1 used during step s. Since Tt(i+ 1) is a subsegment of St(i) = Ss(i)
that contains Ts(i+ 1) and is therefore of size at least |St(i)|/4, we can apply the

second part of Lemma 9.11.2 to get that ρs−1(Tt(i+ 1))/ρs−1(Ss(i)) ≥
(

1
4

)24
which

is at least 2−C6κ. Proposition 9.11.4 implies that the same inequality holds for ρt−1

(keeping in mind that St(i) = Ss(i)). Since |Tt(i+ 1)|/|St(i)| ≥ 1/3 we also get
(9.25).

9.11.4 Completing the proof of Lemma 9.7.2

Using Lemma 9.11.3 repeatedly we have by induction on i = 1, . . . , d for fixed
t ∈ {1, . . . , n}, that:

ρt−1(Tt(i)) ≥ δ02(2−2i)C6κ (9.26)

φt−1(Tt(i)) ≥
√
n

2
2(2−2i)C6 ≥ σ (9.27)

ρt−1(St(i)) ≥ δ02(1−2i)C6κ ≥ δ∗ (9.28)

φt−1(St(i)) ≥
√
n

2
2(1−2i)C6 ≥ σ. (9.29)

The final inequality of (9.28) follows from (R5). The final inequalities of (9.27)
and (9.29) follow from (R4). Note that the final inequality of (9.29) and (R2)
imply that as we proceed to level i in the induction, the hypothesis |St(i)| ≥ 4 of
Lemma 9.11.3 holds at each step.

This gives us what we need to establish the remaining properties.
Proof of Property (P2(σ)). This says that all segments selected for segment chains
have length at least σ. Since |St(d)| ≥ φt−1(St(d)) this follows from (9.29).
Proof of Property (P3(δ∗)). This says that all segments selected for segment
chains have density at least δ∗ and is included in (9.28).
Proof of Property (P4). We need to establish that the hypotheses of Lemma 9.6.1
(the suitable gap lemma) are satisfied. For the lower bound on the mingap of
Y0 we have from the hypothesis of Lemma 9.4.1 and the choice λ = δ0/6 that
mingap(Y0) ≥ 1 + 12/δ0 ≥ 1 + 2/λ as required. The hypothesis ρt−1(St(i)) ≥
2λ follows from (P3(δ∗)) and the fact that δ∗ ≥ δ/3 ≥ 2λ. The hypothesis

133

wt−1(St(i)) ≥ 2 follows from wt−1(St(i)) = |St(i)|ρ(St(i)) ≥ σδ∗ by properties
(P2(σ)) and (P3(δ∗)) which is at least 2 (e.g.see (R1)).
Proof of Property (P6(α)). This requires a lower bound on ρt−1(St−1(1)) and on
the ratios ρt−1(St(i))/ρt−1(St(i− 1)). For the first bound we use (9.22) with i = 1
and (9.19). For the second we combine (9.22) and (9.23). In both cases we need
the fact that α = 2C6κ.
Proof of Property (P7). Let E be an epoch at level i. We want to bound qE from
below, where qE is the number of moves done during epoch E that were assigned
to epoch E, which means moves that occured during steps t ∈ E of items that
were stored in St(i)−Tt(i+ 1) prior to the move. Let s denote the start time, and
c denote the closing time, of epoch E. The busy segment Bc includes a location
outside of SE(i) (this is the reason that the epoch closed at step c.) Without loss
of generality let us say that Bc includes a location that is to the left of SE(i). Let
L be the left segment of Ss(i)− Ts(i+ 1).

The number of moves charged to epoch E is qE. We’ll show that (1) ev-
ery item stored in L at the start time s of E moves during E and (2) the first
such move is charged to epoch E, and (3) the number of such items is at least
|Ss(i)|ρs−1(Ss(i))/8. This immediately immediately gives (P7).

For (1), note that Bc must include a location in Sc(i+ 1) ⊆ Tc(i+ 1) and so
Bc ∪ Tc(i+ 1) is a segment that must contain all of L. By Proposition 9.11.5, L
must be a subset of the union of the busy segments Bs ∪ · · · ∪ Bc which means
that every item stored in L under fs−1 must move during E. For (2) consider an
item y that was stored in location ` ∈ L under fs−1. Let t be the earliest step
in E that ` ∈ Bt. Thus ` 6∈ Tt(i+ 1) so ` 6∈ St(i+ 1) and so the move of y at
step t is charged to epoch E. For (3) L is a subsegment of St(i) = Ss(i) of size
at least |Ss(i)|/4. As Ss(i) is 25κ-lower balanced with respect to ρs−1 by (9.21),
ρ(L) ≥ ρ(Ss(i))(1/4)25κ ≥ ρ(Ss(i))/2, since κ ≤ 1/50 by (R6).

This completes the proof of Lemma 9.7.2, and thereby also the proof of Lem-
ma 9.4.1.

134

Bibliography

[1] Yehuda Afek, Baruch Awerbuch, Serge A. Plotkin, and
Michael E. Saks. Local management of a global resource in a communi-
cation network. Journal of the ACM, 43(1):1–19, 1996.

[2] Martin Babka, Jan Bulánek, Vladiḿır Čunát, Michal Koucký,
and Michael E. Saks. On online labeling with polynomially many labels.
In Proceedings of the 20th Annual European Symposium on Algorithms, ESA
’12, pages 121–132, 2012.

[3] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin
Farach-Colton, and Jack Zito. Two simplified algorithms for maintain-
ing order in a list. In Proceedings of the 10th Annual European Symposium
on Algorithms, ESA ’02, pages 152–164, 2002.

[4] Michael A. Bender, Erik D. Demaine, and Martin Farach-
Colton. Cache-oblivious B-trees. SIAM Journal on Computing, 35:341–358,
2005.

[5] Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu. A
locality-preserving cache-oblivious dynamic dictionary. Journal of Algorithms,
53(2):115 – 136, 2004.

[6] Michael A. Bender, and Haodong Hu. An adaptive packed-memory
array. ACM Transactions on Database Systems 32(4), 2007.

[7] Richard S. Bird and Stefan Sadnicki. Minimal on-line labelling. Infor-
mation Processing Letters, 101:41–45, 2007.

[8] Alan Borodin, and Ran El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998.

[9] Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache
oblivious search trees via binary trees of small height. In Proceedings of the
13th annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02,
pages 39–48, 2002.

[10] Jan Bulánek, Michal Koucký, and Michael E. Saks. Tight lower
bounds for the online labeling problem. In Proceedings of the 44th Symposium
of Theory of Computation, STOC ’12, pages 1185–1198, 2012.

135

[11] Jan Bulánek, Michal Koucký, and Michael Saks. On Randomized
Online Labeling with Polynomially Many Labels. In Proceedings of the 40th In-
ternational Colloquium on Automata, Languages and Programming, ICALP
’13, pages 291-302, 2013.

[12] Paul F. Dietz, Joel I. Seiferas, and Ju Zhang. Lower bounds for
smooth list labeling. Manuscript, 2005. (Listed in the references of [13]).

[13] Paul F. Dietz, Joel I. Seiferas, and Ju Zhang. A tight lower bound
for online monotonic list labeling. SIAM Journal on Discrete Mathematics,
18:626–637, 2005.

[14] Paul F. Dietz and Ju Zhang. Lower bounds for monotonic list labeling. In
Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory, SWAT
’90, pages 173–180, 1990.

[15] Yuval Emek and Amos Korman. New bounds for the controller problem.
Distributed Computing, 24(3-4):177–186, 2011.

[16] Alon Itai, and Irit Katriel. Canonical density control. Information Pro-
cessing Letters, 104:200–204, 2007.

[17] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table
implementation of priority queues. In Proceedings of the 8th Colloquium on
Automata, Languages and Programming, ICALP ’81, pages 417–431, 1981.

[18] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd
Ed.) Sorting and Searching, Addison Wesley Longman Publishing Co., Inc.,
1998.

[19] Amos Korman and Shay Kutten. Controller and estimator for dynamic
networks. In Proceedings of the 26th annual ACM Symposium on Principles
of Distributed Computing, PODC ’26, pages 175–184, 2007.

[20] Dan E. Willard. A density control algorithm for doing insertions and dele-
tions in a sequentially ordered file in a good worst-case time. Information and
Computation, 97(2):150–204, 1992.

[21] Ju Zhang. Density Control and On-Line Labeling Problems. PhD thesis,
University of Rochester, Rochester, NY, USA, 1993.

136

	Introduction
	Applications
	Definitions
	Label Space vs. Array Notation
	Organization of the Thesis

	I Online Labeling Problem Upper Bounds
	Introduction
	Previous work

	Online Labeling Problem in Small Arrays
	Introduction
	Algorithm Outline
	Main Result
	Definitions
	Segment Hierarchy
	Algorithm Construction
	Proof of Lemma 3.6.1
	Modification of Algorithm A^small for Very Small Arrays

	Online Labeling Problem in Large Arrays
	Introduction
	Algorithm Outline
	Main Result
	Definitions
	Algorithm Description and Analysis

	II Online Labeling Problem Lower Bounds
	Introduction
	Overview of Results
	Definitions
	Proof Techniques
	Lazy Algorithms

	Online Labeling with Large Label Space
	Introduction
	The Main Theorem
	Reducing Prefix Bucketing to Online Labeling
	An Improved Analysis of Bucketing
	Adversary Construction
	Prefix Bucketing
	Connecting Bucketing to Online Labeling
	Lower Bound for Bucketing

	Randomized Online Labeling with Polynomially Many Labels
	Introduction
	The Main Theorem
	Mapping a Randomized Algorithm to a Hard Input Sequence
	Bucketing Game
	Adversary Construction
	Prefix Bucketing and Tail Bucketing
	Tail Bucketing and the Online Labeling
	Lower Bounds on Tail Bucketing
	From cost{b-block} to cost{cheap}

	Online Labeling Problem with Small Label Space
	Introduction
	Hard Sequence Construction
	Charging Scheme
	The Main Theorem
	Adversary Construction
	Interval Chain Properties
	Relating Charge to Online Labeling Cost
	Estimating the Charge

	Online Labeling with Small Label Space and Universe
	Introduction
	Proof Techniques
	The Main Results
	Reduction of the Theorems to the Main Lemma
	Some Notation and Preliminaries for the Proof of the Main Lemma
	A Description of the Adversary for Lemma 9.4.1
	Important Properties of the Adversary
	Proof of Lemma 9.4.1
	Proof of Lemma 9.7.1
	Proof of Lemma 9.7.2
	The Proof that the Adversary Satisfies (P1)-(P7)

	Bibliography

